
CS 5010: Programming Design Paradigms!
Fall 2017

Lecture 2: Whirlwind Tour of Java

Tamara Bonaci
t.bonaci@northeastern.edu

Administrivia 1!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  First assignment due on Monday, Sept 18 by 6pm!

•  Code walkthroughs on Tuesday, Sept 19 from
10am-10pm, in 401 Terry Ave N:!
•  10am – 5:30pm in Camano classroom!
•  6pm – 10pm in Cypress classroom!
•  à You should sign up for your walkthrough slot

using this Google doc!

2	

Administrivia	2!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  How to submit your homework? Using CCIS GitHub!

•  By now, you should have:!
1.  Setup your CCIS account!
2.  Add your CCIS account to this Google doc!
3.  Access your CCIS GitHub at least once!

•  If you haven’t done this, or you don’t have access to
your GitHub repo, email Divya Agarwal ASAP
(agarwal.d@husky.neu.edu)!

3	

Administrivia 3!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  What To Do If I Have Questions?!
1.  General question – post it publicly on Piazza!
2.  Assignment specific question/sensitive question!

•  Send us an email/private Piazza message, or!
•  Come to office hours!

•  Office Hours:!
•  Maria – Mondays 2:30-5:30pm in Lummi!
•  Tamara – Tuesdays 10:00-12:00pm in Lummi!
•  Tamara – this Thursday 2:00-4:00pm in Lummi!
•  Adrienne – this Friday 4:00-5:00pm in Lummi!

4	

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

[Meme	credit:	imgflip.com]	

Your Questions!

5	

Agenda – Whirlwind Tour of Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Introduction to Java!
•  Objects and classes in Java!
•  Data Types in Java!
•  Modifier Types in Java!
•  Scanner, String and Random Classes!
•  Assertions and Exceptions!
•  Testing with Java!
•  Javadoc!
•  HashCode!
•  Overview of Java 8 and 9!

6	

INTRODUCTION TO JAVA!
Whirlwind Tour of Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 7	

Java – The Most Popular Programming
Language in the World*!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Object-oriented!
•  Many well-developed IDEs!
•  Tons of pre-written software (not all of it good J)!
•  Platform independent !

•  Java compiler compiles the source code into byte
code which runs on many different computer types!

* https://www.tiobe.com/tiobe-index//!

8	

Structure of a Java Program!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Every executable Java program consists of a class,!
•  That contains a method named main

•  That contains statements (commands) to be executed!

Copyright 2013 by Pearson Education
8

Structure of a Java program
public class name {
 public static void main(String[] args) {
 statement;
 statement;
 ...
 statement;
 }
}

  Every executable Java program consists of a class,

  that contains a method named main,
  that contains the statements (commands) to be executed.

class: a program

statement: a command to be executed

method: a named group
of statements

[Graphic	credit:	Paerson	Educa:on]	

9	

Our First Java Program!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

public class Hello {

public static void main(String[] args) {

System.out.println("Hello, PDP_Fall_2017!");

System.out.println();

System.out.println(”Keep up the good work");

}

}

•  Output???!
•  System.out.println – two modes!

•  Print a message: System.out.println(“Hi!”);!
•  Print a blank line: System.out.println();!

10	

Static Methods!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Procedural decomposition – division of a problem
into smaller units (methods)!

•  Static method - a named group of statements!
•  Denotes the structure of a program!
•  Eliminates redundancy through code reuse !

•  Steps to using a static method:!
•  Declare it!
•  Run in!

11	

OBJECTS AND CLASSES IN JAVA!
Whirlwind Tour of Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 12	

Objects and Classes!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Object – an entity consisting of states and behavior!
•  States stored in variables/fields!
•  Behavior represented through methods!

•  Classes – templates/blueprints describing the states
and behavior that an object of that type supports !

13	

Classes in Java !

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Classes – templates/blueprints describing the states
and behavior that an object of that type supports!

•  Classes contain:!
•  Local variables – variables defined within any method,

constructor or block!
•  These variables are destroyed when the method has

completed!
•  Instance variables – variables within a class, but outside

any method!
•  Can be accessed from inside any method, constructor or

blocks of that particular class!
•  Class variables – variables declared within a class,

outside of any method, with the keyword static

14	

Classes and Constructors in Java !

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Classes – templates/blueprints describing the states
and behavior that an object of that type supports!

•  Every class has a constructor!
•  In Java, if we don’t explicitly write a constructor,

Java compiler builds a default constructor for that
class !

•  But it is a good practice to write a constructor,
even an empty one!

 15	

Classes and Constructors in Java !

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Example: constructors for a class Zoo!

public class Zoo{

public Zoo() {

}

public Zoo(String name, String city, String state{�

// This constructor has three parameters,
name, city and state.

}

}

16	

Creating an Object in Java !

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  In Java, an object is created from a class using a keyword
new

•  Three steps involved when creating an object from a class:!
1.  Declaration – a new variable is declared, with a variable

name, and object type!
2.  Instantiation – an object is created using the keyword

new

3.  Initialization – an object is initialized using the keyword

new + a constructor call!

 17	

Creating an Object in Java !

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Example: creating an object Zoo!

public class Zoo{

// This constructor has three parameters, name, city
and state.

public Zoo(String name, String city, String state) {

System.out.println("Passed Name is :" + name);

}

public static void main(String []args) {�
// Following statement would create an object myZoo

Zoo myZoo = new Zoo(“Woodland Park”, “Seattle”, “WA”);

 }

}
18	

Accessing Instance Variables and Methods!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  In Java, instance variables and methods are accessed via
created objects:!

/*First create an object */

ObjectReference = new Constructor();

/*Now call a variable as follows */

ObjectReference.variableName;

/*Now call a variable as follows */

ObjectReference.methodName();

19	

Accessing Instance Variables and Methods!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

public class Zoo{

float ZooSize;

public Zoo(String name) {�

// This constructor has one parameter, name.

System.out.println(”Zoo’s name is :" + name);

}

public void setSize(float size) {

ZooSize = size; }

public float getSize() {�

return ZooSize; }

public static void main(String []args) {

Zoo myZoo = new Zoo(”Woodland Park");

/* Call class method to set zoo size*/

myZoo.setSize(55);�

/* Call another class method to get zoo size */

myZoo.getSize();

}

}
 20	

DATA TYPES IN JAVA!
Whirlwind Tour of Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 21	

Data Types in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Data type - a category or set of data values!
•  Constrains the operations that can be performed on

data !
•  Many languages ask the programmer to specify types!

•  Java distinguishes between!
•  Primitive data types – store the actual values!
•  Reference data types – store addresses to objects that

they refer to!

22	

Primitive Data Types in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Eight primitive data types are supported in Java:!
•  byte – 8-bit signed two’s complement integer (min. value -128,

max value 127)!
•  short – 16-bit signed two’s complement integer (min. value

-32,768, max. value 32,767)!
•  int – 32-bit signed two’s complement integer (min. value -231,

max. value 231 -1)!
•  long – 64-bit two’s complelent integer (min. value -263, max.

value 263-1)!
•  float – single-precision 32-bit IEEE 754 floating point!
•  double – double-precision 64-bit IEEE 754 floating point!
•  boolean – only two possible values, true and false!
•  char – single 16-bit Unicode character (min. value ‘\u0000’ (0),

max. value ‘\uffff’ (65, 535))!
23	

Primitive Data Types in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Eight primitive data types are supported in Java:!
•  byte, short, int, long, float, double, boolean,

char

•  Java also provides special support for character strings
via java.lang.String class

24	

Reference Data Types in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

In Java, reference data types are:!
•  Created using classes’ constructors!
•  Used to access object of a declared type, or any object

of a compatible type!

•  Some examples of reference data types:!
•  String!
•  Scanner!
•  Random!

25	

Data Types in Java - Summary!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Question: what
happens if we
declare a variable,
but don’t initialize it?!

•  Answer: Most likely,
the Java compiler
will set those
variables to
reasonable default
values!

Data Type! Default Value!

byte! 0!

short! 0!

int! 0!

long! 0L!

float! 0.0f!

double! 0.0d!

char! ‘\u0000’!

String (or any object)! null!

boolean! false!

But don’t do that à not initializing your data generally
considered a bad programming style!

26	

MODIFIER TYPES IN JAVA!
Whirlwind Tour of Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 27	

Modifiers in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Modifiers – keywords preceding the rest of the
statement, used to change the meaning of the definitions
of a class, method, or a variable!

•  Modifiers in Java can be:!
•  Access control modifiers!
•  Non-access control modifiers !

28	

Access-Control Modifiers in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  In Java, there exist four access levels:!
1.  Visible to the package (default, no modifier needed)!
2.  Visible to the class only (modifier private)!
3.  Visible to the world (modifier public)!
4.  Visible to the package and all subclasses (modifier

protected)!

29	

Non Access-Control Modifiers in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Non-access control modifiers in Java include:!
•  static - for creating class methods and variables!
•  final – for finalizing the implementations of classes,

methods and variables!
•  abstract – for creating abstract classes and methods!
•  synchronized and volatile – used for threads!

30	

SCANNER, STRING AND
RANDOM CLASSES!

Whirlwind Tour of Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 31	

Interactive Programs!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Interactive programs – programs where a user interacts
with a program by providing an input into the console,
that a program then reads and uses for execution!

•  Interactive programs can (sometimes) be challenging!
•  Computers and users think in very different way!
•  Users misbehave
•  Users are malicious !

32	

Interactive Programs in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Interactive programs – programs where a user interacts
with a program by providing an input into the console,
that a program then reads and uses for execution!

•  Java typically handles user input using System.in, but!
•  System.in is not intended to be used directly!
•  Instead, we use a second object, Scanner

•  Scanner is in a package named java.util !

•  Constructing a Scanner object to read console input: !
import java.util.*;

Scanner name = new Scanner(System.in);

33	

Scanner Methods!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Each method waits until the user presses Enter !

•  The value typed is returned !

[Table	credit:	Paerson	Educa:on]	

34	

Method	 Descrip:on	

nextInt()
 Reads	a	token	of	user	input	as	an	int

nextDouble()
 Reads	a	token	of	user	input	as	a	double

next()
 Reads	a	token	of	user	input	as	a	String

nextLine()
 Reads	a	line	of	user	input	as	a	String

Example Scanner Usage!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

import java.util.*; // so that we can use Scanner

public class ReadSomeInput {�

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("How many courses are you taking this term? ");

int numCourses = console.nextInt();

System.out.println(numCourses + "... That's too many!");

}

}

Output (user input underlined): !

How many courses are you taking this term? 4

4... That's too many!

35	

Strings in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  String - an object storing a sequence of text characters!
•  Unlike most other objects, a String object is not

created with new*!
•  String name = "text"; !
•  String name = expression; !

•  Example!
int x = 5;�
int y = 25;�
String point = "(" + x + ", " + y + ")";

* This is not the whole story. String can be created as an object, with a
keyword new. To learn more about why are Strings special in Java, please
refer to Java Programming Tutorial, Java String is Special, [Online],
https://www.ntu.edu.sg/home/ehchua/programming/java/J3d_String.html!

36	

Strings Indexes!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Characters of a string are numbered with 0-based
indexes: !

•  Example: !

String name = ”NEU CCIS";

!
!
•  The first character's index is always 0 !
•  The last character's index is 1 less than the string's

length!
•  The individual characters are values of type char!

Index	 0	 1	 2	 3	 4	 5	 6	 7	

Char	 N	 E	 U	 C	 C	 I	 S	

37	

Strings Methods!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  String methods are called using dot notation!
•  Example:!

•  String city = “Seattle”;

•  System.out.println(city.length()); //7

[Table	credit:	Paerson	Educa:on]	
38	

Method	name	 Descrip:on	

indexOf(str)
 Index	where	the	start	of	the	given	string	
appears	in	this	string	(-1	if	it	is	not	there)	

length()
 Number	of	characters	in	the	string	

substring(index1, index 2),

substring(index1)

The	characters	in	this	string	from	index1	
(inclusive)	to	index2	(exclusive).	If	index2	
omiRed,	grab	Sll	the	end	of	string.	

toLowerCase()
 A	new	string	with	all	lowercase	leRers	

toUpperCase()
 A	new	string	with	all	uppercase	leRers	

Modifying Strings!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Some methods (e.g., substring, toLowerCase, etc)
create/return a new string, rather than modifying the
current string!

String s = ”northeastern";

s.toUpperCase();

System.out.println(s); // northeastern

•  To modify a variable, you must reassign it: !
String s = ”northeastern";

s = s.toUpperCase();

System.out.println(s); // NORTHEASTERN

39	

Strings as User Inputs!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Scanner's next method reads a word of input as a String !
Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");�
String name = console.next();�
name = name.toUpperCase();!
System.out.println(name + " has " + name.length() + !
 " letters and starts with " + name.substring(0, 1)); !

•  Output 1: !
What is your name? Tamara!
TAMARA has 6 letters and starts with T!

•  Output 2:!
•  What is your name? Mary Ann!
•  MARY ANN has 8 letters and starts with M!

•  The nextLine method reads a line of input as a String!
System.out.print("What is your address? ");

String address = console.nextLine();

40	

Comparing Strings!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Relational operators such as < and == fail on objects!
Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");

String name = console.next();�

if (name == "Barney") {

System.out.println("I love you, you love me,");

System.out.println("We're a happy family!");

}

!

•  This code will compile, but it will not print the song. Why?!
•  == compares objects by references, so it often !

gives false even when two Strings have the same letters !
41	

The equals() Method!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Objects are compared using a method named equals

Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");

String name = console.next();�

if (name.equals("Barney")) {

System.out.println("I love you, you love me,");

System.out.println("We're a happy family!");

}

•  Technically, this is a method that returns a value of type
boolean, the type used in logical tests !

42	

String Test Methods!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

[Table	credit:	Paerson	Educa:on]	

43	

Method	 Descrip:on	

equals(str)
 Whether	two	string	contain	the	same	characters	

equalsIgnoreCase(str)
 Whether	two	strings	contain	the	same	characters,	ignoring	
upper	vs.	lower	case	

startsWith(str)
 Whether	one	contains	other’s	characters	at	start	

endsWith(str)
 Whether	one	contains	other’s	characters	at	end	

contains(str)
 Whether	the	given	string	is	found	within	this	one	

Overriding equals() Methods!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 44	

Practice GATE CS Placements Videos ContributeLogin/Register

Custom Search

Overriding equals method in Java
Consider the following Java program:

Output:

Not	Equal	

The reason for printing “Not Equal” is simple: when we compare c1 and c2, it is checked whether
both c1 and c2 refer to same object or not (object variables are always references in Java). c1 and
c2 refer to two different objects, hence the value (c1 == c2) is false. If we create another reference
say c3 like following, then (c1 == c3) will give true.

GeeksforGeeks
A computer science portal for geeks

Run on IDE

class	Complex	{
				private	double	re,	im;				
					
				public	Complex(double	re,	double	im)	{
								this.re	=	re;
								this.im	=	im;
				}
}
	
//	Driver	class	to	test	the	Complex	class
public	class	Main	{
				public	static	void	main(String[]	args)	{
								Complex	c1	=	new	Complex(10,	15);
								Complex	c2	=	new	Complex(10,	15);
								if	(c1	==	c2)	{
												System.out.println("Equal	");
								}	else	{
												System.out.println("Not	Equal	");
								}
				}
}

Run on IDE

Complex	c3	=	c1;		//	(c3	==	c1)	will	be	true

•  Consider the following code:!

What is the output???!

[Code	example	from:		
GeeksForGeeks:	Overriding	equals	

method	in	Java,	hRp://
www.geeksforgeeks.org/overriding-

equals-method-in-java/]	

Overriding equals() Methods!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 45	

•  Consider the following code:!

So, how do we check for equality of values inside the objects? All classes in Java inherit from the
Object class, directly or indirectly (See point 1 of this). The Object class has some basic methods like
clone(), toString(), equals(),.. etc. We can override the equals method in our class to check whether
two objects have same data or not.

Output:

Equal	

Run on IDE

Run on IDE

class	Complex	{
	
				private	double	re,	im;
	
				public	Complex(double	re,	double	im)	{
								this.re	=	re;
								this.im	=	im;
				}
	
				//	Overriding	equals()	to	compare	two	Complex	objects
				@Override
				public	boolean	equals(Object	o)	{
	
								//	If	the	object	is	compared	with	itself	then	return	true		
								if	(o	==	this)	{
												return	true;
								}
	
								/*	Check	if	o	is	an	instance	of	Complex	or	not
										"null	instanceof	[type]"	also	returns	false	*/
								if	(!(o	instanceof	Complex))	{
												return	false;
								}
									
								//	typecast	o	to	Complex	so	that	we	can	compare	data	members	
								Complex	c	=	(Complex)	o;
									
								//	Compare	the	data	members	and	return	accordingly	
								return	Double.compare(re,	c.re)	==	0
																&&	Double.compare(im,	c.im)	==	0;
				}
}
	
//	Driver	class	to	test	the	Complex	class
public	class	Main	{
	
				public	static	void	main(String[]	args)	{
								Complex	c1	=	new	Complex(10,	15);
								Complex	c2	=	new	Complex(10,	15);
								if	(c1.equals(c2))	{
												System.out.println("Equal	");
								}	else	{
												System.out.println("Not	Equal	");
								}
				}
}

[Code	example	from:		GeeksForGeeks:	Overriding	equals	method	in	Java,	
hRp://www.geeksforgeeks.org/overriding-equals-method-in-java/]	

Overriding equals() Methods!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 46	

•  Consider the following code:!

So, how do we check for equality of values inside the objects? All classes in Java inherit from the
Object class, directly or indirectly (See point 1 of this). The Object class has some basic methods like
clone(), toString(), equals(),.. etc. We can override the equals method in our class to check whether
two objects have same data or not.

Output:

Equal	

Run on IDE

Run on IDE

class	Complex	{
	
				private	double	re,	im;
	
				public	Complex(double	re,	double	im)	{
								this.re	=	re;
								this.im	=	im;
				}
	
				//	Overriding	equals()	to	compare	two	Complex	objects
				@Override
				public	boolean	equals(Object	o)	{
	
								//	If	the	object	is	compared	with	itself	then	return	true		
								if	(o	==	this)	{
												return	true;
								}
	
								/*	Check	if	o	is	an	instance	of	Complex	or	not
										"null	instanceof	[type]"	also	returns	false	*/
								if	(!(o	instanceof	Complex))	{
												return	false;
								}
									
								//	typecast	o	to	Complex	so	that	we	can	compare	data	members	
								Complex	c	=	(Complex)	o;
									
								//	Compare	the	data	members	and	return	accordingly	
								return	Double.compare(re,	c.re)	==	0
																&&	Double.compare(im,	c.im)	==	0;
				}
}
	
//	Driver	class	to	test	the	Complex	class
public	class	Main	{
	
				public	static	void	main(String[]	args)	{
								Complex	c1	=	new	Complex(10,	15);
								Complex	c2	=	new	Complex(10,	15);
								if	(c1.equals(c2))	{
												System.out.println("Equal	");
								}	else	{
												System.out.println("Not	Equal	");
								}
				}
}

[Code	example	from:		
GeeksForGeeks:	
Overriding	equals	

method	in	Java,	hRp://
www.geeksforgeeks.org/

overriding-equals-
method-in-java/]	

Overriding equals() Methods!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 47	

•  Consider the following code:!

•  What is the output now???!

So, how do we check for equality of values inside the objects? All classes in Java inherit from the
Object class, directly or indirectly (See point 1 of this). The Object class has some basic methods like
clone(), toString(), equals(),.. etc. We can override the equals method in our class to check whether
two objects have same data or not.

Output:

Equal	

Run on IDE

Run on IDE

class	Complex	{
	
				private	double	re,	im;
	
				public	Complex(double	re,	double	im)	{
								this.re	=	re;
								this.im	=	im;
				}
	
				//	Overriding	equals()	to	compare	two	Complex	objects
				@Override
				public	boolean	equals(Object	o)	{
	
								//	If	the	object	is	compared	with	itself	then	return	true		
								if	(o	==	this)	{
												return	true;
								}
	
								/*	Check	if	o	is	an	instance	of	Complex	or	not
										"null	instanceof	[type]"	also	returns	false	*/
								if	(!(o	instanceof	Complex))	{
												return	false;
								}
									
								//	typecast	o	to	Complex	so	that	we	can	compare	data	members	
								Complex	c	=	(Complex)	o;
									
								//	Compare	the	data	members	and	return	accordingly	
								return	Double.compare(re,	c.re)	==	0
																&&	Double.compare(im,	c.im)	==	0;
				}
}
	
//	Driver	class	to	test	the	Complex	class
public	class	Main	{
	
				public	static	void	main(String[]	args)	{
								Complex	c1	=	new	Complex(10,	15);
								Complex	c2	=	new	Complex(10,	15);
								if	(c1.equals(c2))	{
												System.out.println("Equal	");
								}	else	{
												System.out.println("Not	Equal	");
								}
				}
}

[Code	example	from:		GeeksForGeeks:	Overriding	equals	method	in	Java,	
hRp://www.geeksforgeeks.org/overriding-equals-method-in-java/]	

The Random Class!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  A Random object generates pseudo-random* numbers!
•  Class Random is found in the java.util package!

•  Example:!
import java.util.*;

Random rand = new Random();

int randomNumber = rand.nextInt(25); // 0-24

 !

[Table	credit:	Paerson	Educa:on]	

48	

Method	 Descrip:on	

nextInt()
 Returns	a	random	integer	

nextInt(max)
 Returns	a	random	integer	in	the	range	[0,	max]	

nextDouble()
 Returns	a	random	real	number	in	the	range	[0.0,	1.0]	

ASSERTIONS AND EXCEPTIONS!
Whirlwind Tour of Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 49	

Logical Assertions!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Assertions – statements that are either true or false!

•  Examples:!
•  Java is not the most popular programming language.

à FALSE!
•  17 is a prime number. à TRUE!
•  25 is smaller than 625. à TRUE!
•  X divided by 5 equals 4. à IT DEPENDS!

50	

Assertions in Code!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  We can make assertions about our code and ask whether
they are true at various points in the code!

•  Valid answers are ALWAYS, NEVER, or SOMETIMES !

System.out.print("Type a nonnegative number: "); double number =
console.nextDouble();

// Point A: is number < 0.0 here?
(SOMETIMES)

while (number < 0.0) {

// Point B: is number < 0.0 here?
 (ALWAYS)

System.out.print("Negative; try again: ");

number = console.nextDouble();

// Point C: is number < 0.0 here?
(SOMETIMES)

// Point D: is number < 0.0 here?
(NEVER)

51	

Exceptions in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Exception - a problem that arises during the execution of a
program!
•  When an exception occurs, a normal flow of a program

is disrupted, and a program terminates abnormally !

•  Causes of exceptions:!
•  User errors!
•  Programmer errors!
•  Failure of physical resources!

!

52	

Exception Categories in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Exception - a problem that arises during the execution of a
program!
•  When an exception occurs, a normal flow of a program

is disrupted, and a program terminates abnormally !

•  Three possible categories of exceptions:!
•  Checked exceptions − an exception that occurs at the

compile time (compile time exceptions)!
•  Example: if you use FileReader class in your program to read

data from a file, and if the file specified in its constructor
doesn't exist, then a FileNotFoundException occurs, and the
compiler prompts the programmer to handle the exception!

53	

Exception Categories in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Exception - a problem that arises during the execution of a
program!
•  When an exception occurs, a normal flow of a program

is disrupted, and a program terminates abnormally !

•  Three possible categories of exceptions:!
•  Unchecked exceptions − an exception that occurs at

the time of execution (runtime exception) !
•  Include programming bugs, (e.g., logic errors or

improper use of an API)!
•  Example: if you have declared an array of size 5 in your

program, and trying to call the 6th element of the array, an
ArrayIndexOutOfBoundsExceptionexception occurs !

54	

Exception Categories in Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Exception - a problem that arises during the execution of a
program!
•  When an exception occurs, a normal flow of a program

is disrupted, and a program terminates abnormally !

•  Three possible categories of exceptions:!
•  Errors − problems that arise beyond the control of the

user or the programmer!
•  Example: if a stack overflow occurs, an error will arise

55	

Exceptions Hierarchy!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  All exception classes are subtypes of the
java.lang.Exception class!

•  The Exception class is a subclass of the Throwable class.!
•  The Exception class has two main subclasses:!

•  IOException class !
•  RuntimeException class!

Java - Encapsulation

Java - Interfaces

Java - Packages

Java Advanced

Java - Data Structures

Java - Collections

Java - Generics

Java - Serialization

Java - Networking

Java - Sending Email

Java - Multithreading

Java - Applet Basics

Java - Documentation

Java Useful Resources

Java - Questions and
Answers

Java - Quick Guide

Java - Useful Resources

Java - Discussion

Java - Examples

Selected Reading

Developer's Best Practices

Questions and Answers

Effective Resume Writing

HR Interview Questions

Computer Glossary

Who is Who

Unchecked exceptions − An unchecked exception is an
exception that occurs at the time of execution. These are
also called as Runtime Exceptions. These include
programming bugs, such as logic errors or improper use
of an API. Runtime exceptions are ignored at the time of
compilation.

For example, if you have declared an array of size 5 in your

program, and trying to call the 6th element of the array then an
ArrayIndexOutOfBoundsExceptionexception occurs.

public class Unchecked_Demo {

 public static void main(String args[]) {
 int num[] = {1, 2, 3, 4};
 System.out.println(num[5]);
 }
}

If you compile and execute the above program, you will get the
following exception.

Errors − These are not exceptions at all, but problems
that arise beyond the control of the user or the
programmer. Errors are typically ignored in your code
because you can rarely do anything about an error. For
example, if a stack overflow occurs, an error will arise.
They are also ignored at the time of compilation.

All exception classes are subtypes of the java.lang.Exception
class. The exception class is a subclass of the Throwable class.
Other than the exception class there is another subclass called
Error which is derived from the Throwable class.

Errors are abnormal conditions that happen in case of severe
failures, these are not handled by the Java programs. Errors are
generated to indicate errors generated by the runtime
environment. Example: JVM is out of memory. Normally,

programs cannot recover from errors.

The Exception class has two main subclasses: IOException class
and RuntimeException Class.

Following is a list of most common checked and unchecked
Java's Built-in Exceptions .

Following is the list of important methods available in the
Throwable class.

Sr.No. Method & Description

1

public String getMessage()

Returns a detailed message about the exception that
has occurred. This message is initialized in the

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 5

 at Exceptions.Unchecked_Demo.main(Unchecked_Demo.java:8)

Example

Output

Exception Hierarchy

Exceptions Methods

[Graphic	credit:	Java	tutorial]	

56	

Catching Exceptions!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  A method catches an exception using a combination of the
try and catch keywords!
•  A try/catch block is placed around the code that might

generate an exception (protected code)!

•  Syntax:!
try {�

// Protected code

}catch(ExceptionName e1)

{

// Catch block

}

57	

Catching Exceptions!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Syntax:!
try {�

// Protected code

}catch(ExceptionName e1)

{

// Catch block

}

•  A catch statement declares the type of exception you are

trying to catch !
•  If an exception occurs in protected code, the catch

block (or blocks) that follows the try is checked!
•  If the type of exception that occurred is listed in a catch

block, the exception is passed to the catch block much
as an argument is passed into a method parameter !

58	

Exceptions Methods!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  public String getMessage() - returns a detailed message about the
exception that has occurred!

•  public Throwable getCause() - returns the cause of the exception
as represented by a Throwable object!

•  public String toString() - returns the name of the class
concatenated with the result of getMessage()!

•  public void printStackTrace() - prints the result of toString() along
with the stack trace to System.err, the error output stream!

•  public StackTraceElement [] getStackTrace() - returns an array
containing each element on the stack trace. The element at index 0
represents the top of the call stack, and the last element in the array
represents the method at the bottom of the call stack !

•  public Throwable fillInStackTrace() - fills the stack trace of this
Throwable object with the current stack trace, adding to any previous
information in the stack trace!

59	

TESTING WITH JAVA!
Whirlwind Tour of Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 60	

Software Tests!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Software test - a piece of software, which executes another
piece of software, in order to validate that code:!
•  Results in the expected state (state testing) !
•  Executes the expected sequence of events (behavior

testing)!

•  Software unit tests – used to verify that the logic of a piece
of the program is correct!

61	

Some Testing Terminology!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Unit test - a piece of code written by a developer that
executes a specific functionality in the code to be tested, and
asserts a certain behavior or state!
•  Not suitable for testing complex user interface or

component interaction!
•  Test fixture - fixed state in the tested code which is used as

input for a test (test precondition) !
•  Test coverage - the percentage of code tested by unit test!
•  Integration test - a code used to test the behavior of a

component, or the integration between a set of components!
•  Performance tests – test used to repeatedly benchmark

software components!
! 62	

Testing Frameworks for Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Several testing frameworks available for Java:!
•  JUnit !
•  TestNG !

!

63	

Testing Frameworks for Java - Example!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  The test assumes that the MyClass class exists and has a multiply(int,
int) method. !

!
import static org.junit.jupiter.api.Assertions.assertEquals;

import org.junit.jupiter.api.Test;

public class MyTests {

@Test

public void

multiplicationOfZeroIntegersShouldReturnZero() {

MyClass tester = new MyClass(); // MyClass is tested

// assert statements

assertEquals("10 x 0 must be 0", 0, tester.multiply(10, 0));

assertEquals("0 x 10 must be 0", 0, tester.multiply(0, 10));

assertEquals("0 x 0 must be 0", 0, tester.multiply(0, 0)); } }

64	

[Code	example	from:		
Vogela,	Unit	Tes:ng	

with	Junit]	

JAVADOC!
Whirlwind Tour of Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 65	

Javadoc!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Javadoc – a tool for generating API documentation in
HTML format from doc comments in source code!

•  Javadoc convention for writing specifications!
•  Method signature!
•  Text description of method:!

•  @param: description of what gets passed in!
•  @return: description of what gets returned!
•  @throws: exceptions that may occur !

66	

Example: Javadoc for String.contains!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

public boolean contains(CharSequence s)

Returns true if and only if this string contains the
specified sequence of char values.

Parameters:

s- the sequence to search for

Returns:

true if this string contains s,

false otherwise

Throws:

NullPointerException – if s is null

Since: 1.5

67	

Javadoc & Pre/postconditions!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  The precondition: constraints that hold before the method is
called (if not, all bets are off) !
•  @requires: spells out any obligations on client !

•  The postcondition: constraints that hold after the method is
called (if the precondition held) !
•  @modifies: lists objects that may be affected by method; any

object not listed is guaranteed to be untouched !
•  @throws: lists possible exceptions and conditions under

which they are thrown (Javadoc uses this too) !
•  @effects: gives guarantees on final state of modified objects!
•  @return: describes return value (Javadoc uses this too) !

68	

JAVA HASHCODE!
!

Whirlwind Tour of Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 69	

Java hashCode()!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 70	

•  In Java, every class implicitly or explicitly provides a
hashCode() method, which digests the data stored in an
instance of the class into a single hash value (a 32-bit
signed integer)!

•  Hash used by other code when storing or manipulating
the instance !

•  This property is important to the performance of hash
tables and other data structures that store objects in
groups ("buckets") based on their computed hash values!

Java hashCode()!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 71	

public class Employee {

int employeeId;

String name;

Department dept;

// other methods would be in here

@Override

public int hashCode() {

int hash = 1;

hash = hash * 25 + employeeId;�

hash = hash * 12 + name.hashCode();�

hash = hash * 9 + (dept == null ? 0 : dept.hashCode());

}

[Code	example	from:		
Wikipedia,	Java	

hashCode(),	hRps://
en.wikipedia.org/wiki/

Java_hashCode()]	

WHAT’S NEW IN JAVA 8 AND 9?*!
* EXHAUSTIVE LIST AT HTTP://WWW.ORACLE.COM/TECHNETWORK/JAVA/JAVASE/8-WHATS-
NEW-2157071.HTML AND!
HTTPS://DOCS.ORACLE.COM/JAVASE/9/WHATSNEW/TOC.HTM#JSNEW-
GUID-71A09701-7412-4499-A88D-53FA8BFBD3D0!
!

Whirlwind Tour of Java!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	 72	

What’s New in Java 8?!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Collections!
•  Classes in the new java.util.stream package provide a

Stream API to support functional-style operations on
streams of elements !

•  Security!
•  Many, many good things! Check them out J !

•  Javac tool!
•  The parameters options of the javac command can be

used to store formal parameter names!
•  The javac tool now has support for checking the content of

javadoc comments !
•  Javadoc tool!

•  The javadoc tool supports the new DccTree API that
enables you to traverse comments as abstract syntax trees!

73	

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

[Meme	credit:	imgflip.com]	

Your Questions!

74	

References and Reading Material!

9/13/17	 CS	5010,	Fall	2017	-	Lecture	2	

•  Java Tutorial: Java – Object and Classes, [Online]
https://www.tutorialspoint.com/java/java_object_classes.htm!

•  Oracle Java Tutorial - Primitive Data Types, [Online],
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html!

•  Java Tutorial: Java – Modifier Types, [Online],
https://www.tutorialspoint.com/java/java_modifier_types.htm!

•  Java Programming Tutorial, Java String is Special, [Online],!
•  https://www.ntu.edu.sg/home/ehchua/programming/java/J3d_String.html!
•  Geeks For Geeks: Overriding equals Method in Java, [Online], !
•  http://www.geeksforgeeks.org/overriding-equals-method-in-java/!
•  Java Tutorial: Java – Exceptions, [Online],

https://www.tutorialspoint.com/java/java_exceptions.htm!
•  Vogela, Unit Testing with Junit, [Online], !
•  http://www.vogella.com/tutorials/JUnit/article.html!
•  Oracle, What’s New in JDK 8, [Online],

http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html!
•  Oracle, Java Platform, What’s New in JDK 9, [Online], !
•  https://docs.oracle.com/javase/9/whatsnew/toc.htm#JSNEW-GUID-71A09701-7412-4499-

A88D-53FA8BFBD3D0!
75	

