
CS 5010: Programming Design Paradigms!
Fall 2017

Lecture 7: Data Structures and Algorithms

Tamara Bonaci
t.bonaci@northeastern.edu

Acknowledgement: lecture notes inspired by course material prepared by UW
faculty members Z. Fung and H. Perkins.

Administrivia!
•  No code walk this week (grades for your

assignments coming soon)!

•  Assignment 4 due on Monday, October 23by 6pm!
•  Code walkthroughs on Tuesday, October 24 from

10am-9pm, in 401 Terry Ave N:!
•  10am – 5:30pm in Camano classroom!
•  6pm – 10pm in Cypress classroom!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 2	

Agenda – Algorithms and Data Structures 1!
•  Data collections!
•  List ADT!

•  Doubly-linked List!
•  Algorithm: Recursion!

•  Stack ADT!
•  Some implementation details!
•  Algorithm: backtracking!

•  Queue ADT!
•  Mixing stacks and queues!
•  Circular queues!

•  Trees!
•  Binary trees!

•  Tree Traversals!
•  Some comments and hints about Assignment 4!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 3	

DATA COLLECTIONS!
Algorithms and Data Structures 1!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 4	

Data Collections?!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 5	

Collection of
chewed gums!

Collection of
pens!

Collection of
cassette tapes!

Collection of
old radios!

Shoes collection! Cars collection!Star wars collection!

[Pictures credit: http://www.smosh.com/smosh-pit/articles/19-epic-collections-strange-things]!

What is a data collection? !

Data Collections?!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 6	

•  Data collection - an object used to store data (think data
structures)!
•  Stored objects called elements!
•  Some typically operations:!

•  add()
•  remove()
•  clear()
•  size()
•  contains()

•  Some examples: ArrayList, LinkedList, Stack, Queue,
Maps, Sets, Trees!

Why do we need different data collections? !

Example: ArrayList vs. LinkedList!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 7	

•  List - a collection of elements with 0-based indexes!
•  Elements can be added to the front, back, or in the middle!
•  Can be implemented as an ArrayList or as a LinkedList!

•  What is the complexity of adding an element to the front of an:!
•  ArrayList? !
•  LinkedList?!

0 1 2 3 4 5 6

Front! End!

Adding an
element!

JAVA COLLECTIONS!
Algorithms and Data Structures 1!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 8	

Java Collections API!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 9	

[Pictures credit: http://www.codejava.net]!

Java Collections API!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 10	

•  In Java, common data structures implemented in Java
Collections API!

•  Part of the java.util package!

•  Interface Collection<E>:
•  Extended by four interfaces:!

•  List<E>
•  Set<E>
•  Queue<E>
•  Map<K,V>

•  Extends interface Iterable<T>

Interfaces Iterable<T> and Iterator<E>

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 11	

•  Implementing interface Iterable<T> allows an object to be
traversed using the for each loop!

•  Every object that implements Iterable<T> must provide a
method Iterator iterator()

•  Interface Iterator – an iterator over a collection!
public interface Iterator<E> {
 boolean hasNext();
 E next();
 void remove():

}
•  Iterator remove() method – removes the last item returned

by method next()

Direct Use of an Iterator<E>

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 12	

•  Interface Iterator – an iterator over a collection!
public interface Iterator<E> {
 boolean hasNext();
 E next();
 void remove():

}

•  Careful when an iterator is used directly (not via a for each
loop)à if you make any structural changes to a collection
being iterated (add, remove, clear), the iterator is no
longer valid (ConcurrentModificationException
thrown)

LIST ADT!
Algorithms and Data Structures 1!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 13	

Java List API!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 14	

[Pictures credit: http://www.codejava.net]!

•  List<E> - the base interface!
•  Abstract subclasses: !

•  AbstractList<E>
•  AbstractSequentialList<E>

•  Concrete classes: !
•  ArrayList<E>
•  LinkedList<E>
•  Vector<E> (legacy collection)!
•  CopyOnWriteArrayList<E>

(class under java.util.concurrent
package)!

•  Main methods:!
•  E get(int index);
•  E set(int index, E

newValue);
•  Void add(int index, E x);
•  Void remove(int index);
•  ListIterator<E>

listIterator();
 !

Example: Removing Elements from a LinkedList

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 15	

Front!

A0! A1! A2! A3! A4!

End!

A5!
!

•  Remove the first element of the list!
•  Remove element A3 from the list!
•  Remove the last element in the list!

•  What’s the tricky part about removing elements A3 and A5? !
•  Having to find their predecessors (elements A2 and A4) and updating their

link to last node!
•  Idea: every node maintains the link to its previous and its next node à

doubly linked list!

Front! End!

Doubly LinkedList

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 16	

Front!

A0! A1! A2! A3! A4!

End!

A5!

•  Removing the first element of the list!
•  Removing the last element of the list!

Front! End!

Implementation of a Doubly LinkedList

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 17	

•  Review – inner and nested classes:!
!

!

[Pictures credit: https://www.tutorialspoint.com/java/images/inner_classes.jpg]!

•  Java allows us to define a class within another class – a nested class!
•  Static nested classes!
•  Non-static nested classes or inner classes – have access to other members

of the enclosing class, even if they are declared private!

Implementation of a Doubly LinkedList

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 18	

•  Doubly linked list – need to provide and maintain links to both ends of the list!
•  Implemented classes:!

•  Class MyLinkedList
•  Class Node – private nested class, contains the data and links to previous

and next nodes!
•  Class LinkedListIterator – private inner class, implementing the

interface Iterator

•  Sentinel nodes:!
•  Header and tail nodes, used to logically represent the beginning and the

end markers!

Header!
A0! A1!

Tail!

Implementation of a Doubly LinkedList:
MyLinkedList

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 19	

public class MyLinkedList<E> implements Iterable<E>{
private int listSize;
private int modCount = 0;
private Node<E> beginMarker;
private Node<E> endMarker;

public MyLinkedList(){

 doClear();
}
public int size(){

 return listSize;
}
public boolean isEmpty(){

 return size()==0;
}
public boolean add(E x){

 add(size(), x);
 return true;

}
public void add(int index, E x){

 addBefore(getNode(index, 0, size()), x);
}

Implementation of a Doubly LinkedList:
MyLinkedList

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 20	

public E get(int index){
 return getNode(index).data;

}
public E set(int index, E newVal){

 Node<E> p = getNode(index);
 E oldVal = p.data;
 p.data = newVal;
 return oldVal;

}

public E remove(int index){
 return remove(getNode(index));

}
public java.util.Iterator<E> iterator(){

 return new LinkedListIterator();
}

Implementation of a Doubly LinkedList: Node

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 21	

private static class Node<E>{
 public E data;
 public Node<E> prev;
 public Node<E> next;

 public Node(E d, Node<E> p, Node<E> n){
 data = d;
 prev = p;
 next = n;
 }

}

Implementation of a Doubly LinkedList: clear()

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 22	

public void clear(){
 doClear();

}

Private void doClear(){

 listSize = 0;
 modCount ++;

 beginMarker = new Node<E>(null, null, null);
 endMarker = new Node<E>(null, beginMarker, null);
 beginMarker.next = endMarker;

}

Implementation of a Doubly LinkedList:
addBefore()

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 23	

/**
*Adds an item to this collection, at specified position p.
* Items at or after that position are slid one position higher.
* @param p Node to add before.
* @param x any object.
*/
private void addBefore(Node<E> p, AnyType x){

 Node<E> newNode = new Node<>(x, p.prev, p);
 p.prev = newNode;
 listSize++;
 modCount++;

}

Implementation of a Doubly LinkedList:
remove()

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 24	

/**
* Removes the object contained in Node p.
* @param p the Node containing the object.
* @return the item that was removed from the collection.
*/
private E remove(Node<E> p) {

 p.next.prev = p.prev;
 p.prev.next = p.next;
 listSize--;
 modCount++;
 return p.data;

}

Implementation of a Doubly LinkedList:
getNode()

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 25	

/**
* Gets the Node at position index, which must be in range 0
to size()-1.
* @param index index to search at.
* @return internal node corresponding to index
* @throws IndexOutOfBoundsException if index is not between
0 and size()-1, inclusive.
*/

private Node<E> getNode(int index){

 return getNode(index, 0, size()-1);
}

Implementation of a Doubly LinkedList:
getNode()

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 26	

/**
* Gets the Node at position index, which must be in range
from lower to upper.
* @param index index to search at.
* @param lower lowest valid index.
* @param upper highest valid index.
* @return internal node corresponding to index
* @throws IndexOutOfBoundsException if index is not between
lower and upper, inclusive.
*/

private Node<E> getNode(int index, int lower, int upper){

 Node<E> p;

 if(index < lower || index > upper)
 throw new IndexOutOfBoundsException();

}

Implementation of a Doubly LinkedList:
getNode()

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 27	

if(index < size()/2){
 p = beginMarker.next;
 for(int i = 0; i < index; i++)
 p = p.next;

}else{
 p = endMarker;
 for(int i = 0; i > index; i--)
 p = p.prev;

}
return p;
}

Implementation of a Doubly LinkedList:
LinkedListIterator()

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 28	

private class LinkedListIterator implements java.util.Iterator<E>{
 private Node<E> current = beginMarker.next;
 private int expectedModCount = modCount;
 private boolean okToRemove = false;

 public boolean hasNext(){
 return current != endMarker;
 }
 public AnyType next(){
 if(modCount != expectedModCount)
 throw new java.util.ConcurrentModificationException();
 if(!hasNext())
 throw new java.util.NoSuchElementException();

 E nextItem = current.data;
 current = current.next;
 okToRemove = true;
 return nextItem;
 }

Implementation of a Doubly LinkedList:
LinkedListIterator()

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 29	

private class LinkedListIterator implements java.util.Iterator<E>{ !

 public void remove(){
 if(modCount != expectedModCount)
 throw new java.util.ConcurrentModificationException();
 if(!okToRemove())
 throw new IllegalStateException();

 MyLinkedList.false.remove(current.prev);
 expectedModCount++;
 okToRemove = false;
 }

}

Recursion

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 30	

[Pictures credit: http://www.telegraph.co.uk/technology/google/6201814/Google-easter-eggs-15-best-
hidden-jokes.html]!

Recursion

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 31	

•  Recursion – an operation defined in terms of itself !
•  Solving a problem recursively means solving smaller

occurrences of the same problem!

•  Recursive programming – an object consist of methods
that call themselves to solve some problem!

•  Can you think of some examples of recursions and
recursive programs?!

Recursive Algorithm

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 32	

•  Every recursive algorithm consists of:!
•  Base case – at least one simple occurrence of the

problem that can be answered directly !
•  Recursive case - more complex occurrence that

cannot be directly answered, but can be described
in terms of smaller occurrences of the same problem!

•  A crucial part of recursive programming is
identifying these cases!

•  What were base cases for our Fibonacci problem in
Assignment 1?!

•  Why are we now talking about recursion???!

Recursive Data Structures

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 33	

•  Recursive data structure - a data structure
partially composed of smaller or simpler
instances of the same data structure!

•  Is linked list a recursive data structure?!
•  Let’s see - a linked list is either!

•  Null (base case) !
•  A node whose next field references a list !

Example: Printing Values in a Linked List

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 34	

public static void printList (Node nodeToPrint){
 if(nodeToPrint == null)
 return;
 else{
 System.out.println(nodeToPrint.data);
 print(nodeToPrint.next);
 }

}

•  Similar problems: print in the reverse order, sum elements of

the list,...!
•  Careful – this is a tail recursion!

•  Tail recursions are not bad, but they do consume the
stack!

STACK ADT!
Algorithms and Data Structures 1!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 35	

Stacks

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 36	

•  Some of my favorite stacks:!

[Pictures credit: https://rukminim1.flixcart.com/image/1408/1408/stacking-toy, http://battellemedia.com/
wp-content/uploads/2014/08/National-Pancake-Day-at-IHOP.jpg, http://all4desktop.com/data_images/

original/4245681-book.jpg]!

What is a Stack?

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 37	

•  Stack – a data collection that retrieves elements in the LIFO order (last-in-
first-out)!

•  Is there another way to think about a stack?!

1	

2	

3	

Stack!

Bottom!

Top!

push()! pop(), peek()!

What is a Stack?

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 38	

•  Is there another way to think about a stack?!
•  Stack – a constrained data collection where clients are limited to use only

limited optimized methods (pop, push, peek) !
•  Stack – a list with restriction that insertions and deletions can be

performed in only one position, the end of the list, called the top!

push()!

Stack!

Top!

Bottom! 1	

2	

3	

pop(), peek()!

Implementations of a Stack

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 39	

•  Stack – a list with restriction that insertions and deletions can be
performed in only one position, the end of the list, called the top!

•  Since a stack is a list, any list implementation will do:!
•  Example: linked list implementation!

•  push()
•  peek()/top()
•  pop()

Front!

A0! A1! A2! A3!

End!

B1!

Front!

Java Class Stack

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 40	

Stack <E>
()

Object constructor – constructs a new stack with
elements of type E!

push(value) Places given value on top of the stack!

pop() Removes top value from the stack, and returns it.
Throws EmptyStackException if the stack is empty.!

peek() Returns top value from the stack without removing it.
Throws EmptyStackException if the stack is empty. !

size() Returns the number of elements on the stack.!

isEmpty() Returns true if the stack is empty.!

•  Example:!
Stack<String> s = new Stack<String>();
s.push(“Hello”);
s.push(“PDP”);
S.push(“Fall 2017”); //bottom [“Hello”, “PDP”, “Fall 2017”] top
System.out.println(s.pop()); //Fall 2017

Applications of a Stack

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 41	

•  Programming languages and compilers:!
•  Method calls (call=push, return=pop) !
•  Compilers (parsers)!
!

•  Matching up related pairs of things:!
•  Find out whether a string is a palindrome !
•  Examine a file to see if its braces { } match !
•  Convert "infix" expressions to pre/postfix !

•  Sophisticated algorithms:!
•  Searching through a maze with "backtracking”!

!

Example: Methods Call

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 42	

•  In some system whenever there is a method call, some
information about the current state of the system needs to be
stored before the control is transferred to a new method:!
•  Parameters!
•  Local variables!
•  Return address!

Stack!

Method 1!
Return	var	
Local	vars	
Parameters	

Return	var	
Local	vars	
Parameters	

Return	var	
Local	vars	
Parameters	

Method 2!

Method 3!

Example: Postfix Expressions

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 43	

•  Suppose you are using a calculator to compute the total cost
of your groceries!
•  Add the costs of individual items!
•  Multiply by 1.1 to account for local sales tax!

•  The natural way to do this with a calculator:!
5.5 + 4.5 + 7 + 8*1.1!

•  What is the expected result?!
•  27.5 (expected value)!
•  25.8!

•  That depends on how “smart” is your calculator!!

Example: Postfix Expressions

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 44	

•  The natural way to do this with a calculator:!
5.5 + 4.5 + 7 + 8*1.1!

•  What if we represent the given expression in the postfix or
Reverse Polish notation:!

5.5 1.1 * 4.5 1.1*+ 7 1.1*+ 8 1.1*+ !

•  The easiest way to implement this is with a stack:!
(5.5 * 1.1) + (4.5 * 1.1) + (7*1.1) + (8*1.1)!

Backtracking

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 45	

•  Backtracking – an algorithmic approach that finds solution(s)
by trying partial solutions, and abandoning them as soon as
they are no longer suitable !

!
•  A "brute force" algorithmic method!

•  All possible solutions paths explored!
•  Often implemented recursively !
!

•  Some applications:!
•  Finding all permutations of a set of values!
•  Parsers!
•  Different games: sudoku, anagrams, crosswords, word

jumbles, 8 queens!

Backtracking Strategies

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 46	

•  When solving a backtracking problem, we often ask:!
•  What are the "choices" in this problem? !

•  What is the "base case"? !
•  How do I know when I'm out of choices?!

•  How do I "make" a choice?!
•  Do I need to create additional variables to remember

my choices? !
•  Do I need to modify the values of existing variables? !

•  How do I explore the rest of the choices?!
•  Do I need to remove the made choice from the list of

choices? !
•  Once I'm done exploring, what should I do? !
•  How do I "un-make" a choice? !

Backtracking Algorithm

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 47	

A general pseudo-code algorithm for backtracking problems: !
!

Explore(choices):!
If there are no more choices to make: !

stop !
Else:!

Choose C.!
 Explore the remaining choices.!

Un-choose C, if necessary. (backtrack!) !
!
•  Why are we talking about backtracking now?!

•  Many backtracking problems can be implemented using a
stack!!

Example: Maze

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 48	

[Pictures credit: https://d1f28u9l1tudce.cloudfront.net/inside-culvers/tyf-story-corn-maze.jpg]!

[Example credit: Zorah Fung, University of Washington]!

Example: Class Maze

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 49	

•  Let’s assume that we have class Maze with the following methods:!

Method/Constructor ! Description !
public Maze(String text) construct a given maze !

public int getHeight(), getWidth() get maze dimensions !
public boolean isExplored(int r, int c)
public void setExplored(int r, int c)

get/set whether you have visited a
location !

public void isWall(int r, int c)
whether given location is blocked by a
wall !

public void mark(int r, int c)
public void isMarked(int r, int c)

whether given location is marked in a
path !

public String toString() text display of maze !

[Example credit: Zorah Fung, University of Washington]!

Example: Solving the Maze!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 50	

•  Write a method solveMaze that accepts as parameters: !
•  A maze !
•  A starting row/column !
and tries to find a path in out of the maze starting from that
position!
!

•  If you find a solution: !
•  Your code should stop exploring!
•  You should mark the path out of the maze on your way back

out of the recursion, using backtracking!
•  (As you explore the maze, squares you set as 'explored' will

be printed with a dot, and squares you 'mark' will display an
X) !

13

Exercise: solve maze
� Write a method solveMaze that accepts a Maze and a

starting row/column as parameters and tries to find a path
out of the maze starting from that position.

� If you find a solution:
� Your code should stop exploring.
� You should mark the path out of the

maze on your way back out of the
recursion, using backtracking.

� (As you explore the maze, squares you set
as 'explored' will be printed with a dot,
and squares you 'mark' will display an X.)

[Example credit: Zorah Fung, University of Washington]!

Example: Solving the Maze!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 51	

14

Decision tree
position (row 1, col 7)
choices ¬­̄® (these never change)

(1, 6) (0, 7)
wall

(2, 7)
wall

(1, 8)

®¯­¬

(1, 5) (0, 6)
wall

(2, 6)
wall

(1, 7)
visited

(1, 7)
visited

(0, 8)
wall

(2, 8) (1, 9)
wall

...
(1, 4) (0, 5)

wall
(2, 5) (1, 6)

visited

......

13

Exercise: solve maze
� Write a method solveMaze that accepts a Maze and a

starting row/column as parameters and tries to find a path
out of the maze starting from that position.

� If you find a solution:
� Your code should stop exploring.
� You should mark the path out of the

maze on your way back out of the
recursion, using backtracking.

� (As you explore the maze, squares you set
as 'explored' will be printed with a dot,
and squares you 'mark' will display an X.)

Decision Tree!

What are our choices in this problem?!
[Picture credit: Zorah Fung]!

QUEUE ADT!
Algorithms and Data Structures 1!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 52	

My Least Favorite Queues!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 53	

[Pictures credit: http://airport.blog.ajc.com, https://s1.cdn.autoevolution.com/images/news/the-longest-
traffic-jam-in-history-12-days-62-mile-long-47237-7.jpg]!

What is a Queue?!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 54	

•  Queue – a data collection that retrieves elements in the FIFO order (first in,
first out)!
•  Elements are stored in order of insertion, but don't have indexes !

•  Client can only:!
•  Add to the end of the queue, !
•  Examine/remove the front of the queue !
!

•  Basic queue operations:!
•  Add (enqueue) - add an element to the back of the queue!
•  Peek - examine the front element!
•  Remove (dequeue) - remove the front element !

1	 2	 3	 4	 5	

Front! Back!
add!peek/

remove!

Implementations of Queues!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 55	

•  Like stack, queue can be seen as a list with restriction, and can be
implemented as a list:!

•  Example: ArrayList implementation!
•  Initially, queue only has elements 1 and 2!
•  Add another element, 3, to the queue!
•  Add another element, 4, to the queue!
•  Add another element, 5, to the queue!
•  Remove an element from the queue!
•  Remove an element from the queue!

!
What happens when we remove two more elements from the queue?!

1	 2	

Front! Back!
add!peek/

remove!

Back!

1	 2	 3	1	 2	 3	 4	

Back!

1	 2	 3	 4	 5	

Back!

2	 3	 4	 5	

Front!

3	 4	 5	

Front!

Implementations of Queues!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 56	

•  What happens when we remove two more elements from the queue?!

•  Approach – circular array implementation - whenever front or back get to
the end of the array, allow them to wrap around to the beginning!

•  Example:!
•  Add another element, 6, to the queue!

•  What is the front and what is the back of the queue now? !

Front == Back!
add!peek/

remove! 5	

6	 5	
add!peek/

remove!

Front !Back!

Applications of Queues!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 57	

•  Operating systems:!
•  Queue of print jobs to send to the printer!
•  Queue of programs / processes to be run !
•  Queue of network data packets to send!

•  Programming:!
•  Modeling a line of customers or clients!
•  Storing a queue of computations to be performed in order!

•  Real world examples:!
•  People waiting in some line!
•  ???!

Class Diagram of the Queue API!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 58	

[Pictures credit: http://www.codejava.net/java-core/collections/class-diagram-of-queue-api]!

Java Interface Queue

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 59	

•  Example:!
 Queue<Integer> myQueue = new LinkedList<Integer>();
 myQueue.add(10);
 myQueue.add(18);
 myQueue.add(2017); // front [10, 18, 2017] back
 System.out.println(myQueue.remove()); // 10

add(value) 	 places given value at back of queue !

remove()
removes value from front of queue and returns it;!
throws a NoSuchElementException if queue is empty !

peek()
returns front value from queue without removing it; r!
eturns null if queue is empty !

size() returns number of elements in queue !

isEmpty() returns true if queue has no elements !

Mixing Queues and Stacks!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 60	

•  We often mix stacks and queues to achieve certain effects!

•  Example: Reverse the order of the elements of a queue!
Queue<Integer> q = new LinkedList<Integer>();
q.add(1);
q.add(2);
q.add(3); // [1, 2, 3]
Stack<Integer> s = new Stack<Integer>();
while (!q.isEmpty()) {
 s.push(q.remove()); } // Q -> S

while (!s.isEmpty()) {
 q.add(s.pop()); } // S -> Q

System.out.println(q); // [3, 2, 1]

TREES!
Algorithms and Data Structures 1!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 61	

Trees!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 62	

[Pictures credit: https://static1.squarespace.com/]!

Trees!
•  Tree - a directed, acyclic structure of linked nodes!

–  Directed - one-way links between nodes!
–  Acyclic - no path wraps back around to the same node twice!

!
•  Can be defined recursively:!

–  A tree is either: !
•  Empty(null), or !
•  A root node that contains: !

– Data!
–  A left subtree !
–  A right subtree !
(The left and/or right subtree could be empty) !

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 63	

Trees Terminology!
•  Node - an object containing a data value and left/right children!
•  Root - topmost node of a tree !
•  Subtree – a smaller tree of nodes on the left or right of the current

node !
•  Parent - a node above the left and right subtrees, that both

subtrees are connected to!
•  Child - a root of each subtree!
•  Sibling - a node with a common parent !
•  Leaf - a node that has no children !
•  Branch - any internal node; neither the root nor a leaf !
•  Level or depth - length of the path from a root to a given node !
•  Height - length of the longest path from the root to any node!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 64	

Trees Terminology Example!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 65	

25	

12	

7	 8	 15! 5	

10	

•  Nodes: {25, 10 ,12, 7, 8, 15, 5}!
•  Root: 25!
•  Subtrees: {10, 7, 8} and {12,

15, 5}!
•  Parents: 10 à {7, 8}, 12 à {15,

5}, 25à {10, 12}!
•  Children: {10, 12, 7, 8, 15, 5}!
•  Siblings: {7, 8}, {15, 5} and {10,

12}!
•  Leaves: {7, 8, 15, 5} !
•  Height: 3!

Implementation of Trees!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 66	

•  Idea: each node in the tree keeps track of:!
–  Its data!
–  Links to all of its children!

•  Problem: The number of children per node is not known in
advance, and may vary significantly!

•  Approach: Keep a children of each node in a linked list of tree
nodes!

class TreeNode {

Object element;

TreeNode firstChild;

TreeNode nextSibling;

}

Binary Trees!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 67	

•  Binary tree – a tree in which no node can have more than two
children!

Binary Tree Implementation!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 68	

•  A basic BinaryNode object stores:!
–  Data, !
–  Link to the left child!
–  Link to the right child !

•  Multiple nodes can be linked together into a larger tree!

class BinaryNode{

//Friendly data; accessible by other package routines
 Object element;

 BinaryNode left;

 BinaryNode right;

}

 !

Example: Class StrigTreeNode

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 69	

StringTreeNode class
// An StringTreeNode object is one node in a binary tree of String

public class StringTreeNode{
public String data; // data stored at this node

Public StringTreeNode left; // reference to left subtree

Public StringTreeNode right; // reference to right subtree

// Constructs a leaf node with the given data

Public StringTreeNode(String data){

 this(data, null, null);
}

// Constructs a branch node with the given data and links
Public StringTreeNode(String data, StringTreeNode left, StringTreeNode right){

 this.data = data;

 this.left = left;

 this.right = right;
}

}

Example: Class StringTree

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 70	

// An StringTree object represents an entire binary tree of
String.
public class StringTree{

 private StringTreeNode root;
 //some methods

}

•  Observations:!
–  We can only talk to the StringTree, not to the node objects inside the

tree!
–  Methods of the StringTree create and manipulate the nodes, their data

and links between them!

TREE TRAVERSALS!
Algorithms and Data Structures 1!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 71	

Tree Traversals!
•  Tree traversal - an examination of the

elements of a tree!
•  Used in many tree algorithms and methods !

•  Common orderings for traversals: !
•  Pre-order – process root node, then its left/right subtrees !
•  In-order – process left subtree, then root node, then right

subtree!
•  Post-order – process left/right subtrees, then root node !

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 72	

Tree Traversals Example!
•  Common orderings for traversals: !

•  Pre-order – process root node, then its left/right subtrees !
•  In-order – process left subtree, then root node, then right subtree!
•  Post-order – process left/right subtrees, then root node !

!
•  Pre-order: 25 10 7 8 12 15 5
•  In-order: 7 10 8 25 15 12 5
•  Post-order: 7 8 10 15 5 12 25
10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 73	

10	

25	

12	

7	 8	 15! 5	

Tree Traversals Trick!
•  To quickly generate a traversal, trace a path around the tree !
•  As you pass a node on the proper side, process it: !

–  Pre-order: left side!
–  In-order: bottom!
–  Post-order: right side !

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 74	

10	

25	

12	

7	 8	 15! 5	

• Pre-order: 25 10 7 8 12 15 5
• In-order: 7 10 8 25 15 12 5
• Post-order: 7 8 10 15 5 12 25

Example: Printing a Tree!
•  Assume we have some class IntTree
•  Add a method print to the IntTree class that prints the elements

of the tree, such that!
–  Elements of a tree are separated by spaces!
–  A node's left and right subtree should be printed before it!

•  Example: tree.print(); //7 8 10 15 5 12 25

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 75	

10	

25	

12	

7	 8	 15! 5	

Example: Printing a Tree!
// An IntTree object represents an entire binary tree of ints
public class IntTree{

 private IntTreeNode overallRoot; // null for an empty tree ...
 public void print(){

 print(overallRoot);
 System.out.println(); // end the line of output

 }

 private void print(IntTreeNode root){

 // (base case is implicitly to do nothing on null)

 if (root != null){

 // recursive case: print left, right, center

 print(overallRoot.left);

 print(overallRoot.right);
 System.out.print(overallRoot.data + " ");
 }

 }

 }

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 76	

Template for Tree Methods!
•  Tree methods are often implemented recursively with a

public/private pair!
–  The private version accepts the root node to process !

public class IntTree {
 private IntTreeNode overallRoot;
 ...

 public type name(parameters) {
 name(overallRoot, parameters);
 }

 private type name(IntTreeNode root, parameters) {
 ...

 }

}

! 10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 77	

Example: contains()
•  Add a method contains to the IntTree class that searches

the tree for a given integer, returning true if it is found. !

•  Example: If an IntTree variable tree referred to the tree
below, the following calls would have these results:!
–  tree.contains(25) à true

–  tree.contains(12) à true

–  tree.contains(4) à false
–  tree.contains(77) à false

!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 78	

25	

12	

7	 8	 15! 5	

10	

Example: contains()
// Returns whether this tree contains the given integer
public boolean contains(int value){

 return contains(overallRoot, value);
}

private boolean contains(IntTreeNode node, int value){
 if (node == null){

 return false; // base case: not found here

 }else if (node.data == value){

 return true; // base case: found here
 }else{

 // recursive case: search left/right subtrees

 return contains(node.left, value) || contains(node.right,
 value);
 }

}

! 10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 79	

ASSIGNMENT 4 – COMMENTS AND HINTS!
Algorithms and Data Structures 1!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 80	

Assignment 4 – Background!

•  Halloween Trick-or-treating:!
– Kids walk from a house to a house, asking for

a trick or a treat!
– Different houses give out different kinds of

treats (candy)!
– Kids have very particular preferences what

kinds of candy would they like to get!
– Kids also have historical knowledge about the

type of candy given out in different
households!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 81	

Assignment 4!

•  Your Assignment:!
– Given:!

•  Historical knowledge about the neighborhood!
•  A list of desired candy for every child!

– Find a way to traverse a neighborhood to get
all the candy from the list!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 82	

Assumptions and Simplifications!

•  Only one neighborhood, with four kinds of houses:!
–  Mansions!
–  Detached homes!
–  Duplexes!
–  Townhomes!

•  Houses give out four different sizes of candy:!
–  Super size!
–  King size!
–  Regular size (default)!
–  Fun size!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 83	

Assumptions and Simplifications!
•  Houses give out ten different kinds of candy:!

–  Twix!
–  Snickers!
–  Mars!
–  Kit Kat!
–  Whoopers!
–  Milky Way!
–  Toblerone!
–  Crunch!
–  Baby Ruth!
–  Almond Joy !

•  And not other kind and size of candy!
10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 84	

Assumptions and Simplifications!
•  Desired list of candy:!

–  Case-insensitive!
–  Ordered!

•  Historical knowledge about households:!
–  Specifics which household gives out which size and kind of

candy!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 85	

How Do You Implement This?!

!

•  Classic slogans:!
– Do one thing well!
– Minimize coupling, maximize cohesion!
–  Isolate operations/abstractions in modules!
– Hide implementation details!

•  Idea: abstract class Candy, inherited by a
concrete candy class for every candy type!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 86	

Where do the Operations Go?!

•  Pure “object-oriented” style!
–  Really, really, really smart candy objects!
–  Each candy object knows how to perform every

operation on itself!
public class TwixCandy extends Candy{

 public TwixCandy(…);

 public typeCheck(…);

 public print();

 public prettyPrint(…);

 …

}

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 87	

Critique!

•  This is nicely encapsulated – all details about
a TwixCandy are hidden in that class!

•  But it is poor modularity!
•  What happens if we want to add some new

operation on a candy? !
– Have to modify every concrete candy class L !

•  Worse: the details of any particular operation
(e.g., type checking, print) are scattered
across all candy classes!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 88	

Modularity Issues!

•  Smart objects make sense if the set of
operations is relatively fixed, but we expect to
need flexibility to add new kinds of objects!

•  Example: graphics system!
– Operations: draw, move, iconify, highlight!
– Objects: textbox, scrollbar, canvas, menu, dialog

box, window, plus new objects defined as the
system evolves!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 89	

Visitor Pattern!

•  Idea: package each operation (print, pretty
print, maximize candy) in a separate visitor
class!

•  Create exactly one instance of each visitor class!
–  Sometimes called a “function object”!
–  Contains all of the methods for that particular

operation, one for each kind of an object!
•  Include a generic “accept visitor” method in every

class!
•  To perform an operation, pass the appropriate

“visitor object” around during a traversal!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 90	

Avoiding instanceof!

•  We’d like to avoid huge if-elseif nests in
the visitor to discover the node types!

void checkTypes(Candy c) {

if (c instanceof TwixCandy) { … }

else if (c instanceof MarsCandy) { … }

else if (c instanceof KitKatCandy) { … }

…

}

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 91	

Visitor Double Dispatch!

•  Idea: include a “visit” method for every type
object in each Visitor!

void visit(TwixCandy);

void visit(MarsCandy);

etc.

•  Include an accept(Visitor v) method in
every class!

•  When Visitor v is passed to an object, the
object’s accept method calls v.visit(this)

– Selects correct Visitor method for this node!
–  “Double dispatch”!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 92	

Visitor Interface!

•  Every separate Visitor implements this interface!

interface Visitor {

// overload visit for every object type

public void visit(TwixCandy c);

public void visit(MarsCandy c);

public void visit(KitKatCandy c);

…

}

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 93	

Accept Method in Each Class!
•  Every class overrides accept(Visitor)!
•  Example !

public class TwixCandy extends Candy{

 …

 // accept a visit from a Visitor object v

 public void accept(Visitor v) {

 v.visit(this);

 }

 …

}

•  Key points!
–  Visitor object passed as a parameter to TwixCandy!
–  TwixCandy calls visitor’s visit method, which dispatches to

visit(TwixCandy) automatically – i.e., the correct method in the visitor
object for this kind of node!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 94	

Encapsulation!

•  A visitor object often needs to be able to
access state in the objects!
∴ May need to expose more object’s state than

we might have done otherwise!
•  i.e., lots of public fields in objects!

– Overall a good tradeoff – better modularity!
(plus, the objects are relatively simple data objects
anyway – not hiding much of anything)!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 95	

[Meme	credit:	imgflip.com]	

Your Questions!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 96	

References and Reading Material!

•  Mark Allen Weiss, Data Structures and Algorithm Analysis in Java, chapters 1 through 4!
•  Oracle, java.util Class Collections, [Online]

http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html!
•  Oracle, Java Tutorials Collections, [Online]

https://docs.oracle.com/javase/tutorial/collections/!
•  Vogella, Java Collections – Tutorial, [Online]

http://www.vogella.com/tutorials/JavaCollections/article.html!
•  Oracle, Java Tutorials, Nester Classes, [Online]

https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html!
•  Princetion, Introduction to Programming in Java, Recursion, [Online]

http://introcs.cs.princeton.edu/java/23recursion/!
•  Jeff Ericson, Backtracking, [Online] http://introcs.cs.princeton.edu/java/23recursion/!
•  Wikibooks, Algorithms/Backtracking, [Online],

https://en.wikibooks.org/wiki/Algorithms/Backtracking!
!

10/18/17	 CS	5010,	Fall	2017	-	Lecture	7	 97	

