
CS 5010: Programming Design Paradigms!
Fall 2017

Lecture 8: Data Structures and Algorithms II

Tamara Bonaci
t.bonaci@northeastern.edu

Acknowledgement: lecture notes inspired by course material prepared by UW
faculty members Z. Fung and E. McCarthy.

Administrivia!
•  Assignment 5 due on Monday, October 30 by 6pm!
•  Code walkthroughs on Tuesday, October 31 in your

regular code walk sessions!
•  Next assignment – in pairs à watch our for more

information on Piazza!

[Picture credit: http://robertsrestaurantpaso.com/wp-content/uploads/2016/12/blog2.jpg]!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 2	

Agenda – Algorithms and Data Structures 2!

•  Some comments and hints about Assignments 4 and 5!
•  Trees!

•  Tree Traversals!
•  Binary trees!
•  Search tree ADT!
•  Balanced trees and AVL trees!

•  Maps and Sets in Java!
•  Hashing and Hash Functions in Java!

•  HashTables!
•  Collisions, probing and chaining!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 3	

ASSIGNMENTS 4 & 5 – COMMENTS AND
HINTS!

Algorithms and Data Structures 2!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 4	

Assignment 4 – A Parser!

•  Given:!
– Historical knowledge about the neighborhood!
– A list of desired candy for every child!

•  Find a way to traverse a neighborhood to
get all the candy from the list!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 5	

Assignment 4 – A Parser!

•  Halloween Trick-or-treating:!
– Different houses give out different kinds of

treats (candy) – a language/grammar!
– Kids have very particular preferences what

kinds of candy would they like to get – a
token stream!

– Neighborhood traversal – a parse tree!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 6	

Assignment 5 – Background!

•  Online transactions – important to verify:!
– An identity of a client !
– A content of the request!

•  Both verifications can be done using digital
signatures!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 7	

Assignment 5 – Your Task!

•  Simulate digital signature verification process
for some fictional bank and its unique clients!

•  Simulator takes several input arguments:!
– Number of unique bank clients!
– Number of distinct transactions!
– Fraction of invalid messages!
– Output files!

!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 8	

Quick Introduction to Digital Signatures!
Digital signature – a public-key mechanism to provide
data integrity and authentication!
	

[Picture credit: pintrest.com, hitentertainment.com]!

[m,	σ]	

Alice Bob

Signature	genera0on	
Use	Alice’s	secret	key	SKA	

to	compute		
σ	=	sig(SKA,	m)	

Signature	verifica0on	
Use	Alice’s	public	key	PKA	

to	verify	message	
ver(PKA,	m,	σ)	

If	ver(PKA,	m,	σ)	=	true	
accept	message	

	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 9	

The RSA Digital Signature Scheme!
RSA digital signature – relies on the difficulty of factoring
the product of large prime numbers!
!
Every digital signature scheme consists of three main
steps:!
1.  Key generation!
2.  Signature generation!
3.  Signature verification!
	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 10	

RSA Digital Signature – Key Generation!

The keys for the RSA digital signature are generated in the same
way as the keys for RSA encryption:!
1.  Generate two distinct large primes p and q!
2.  Compute the product n = pq!
3.  Compute the Euler totient function φ(n) = (p − 1)(q − 1)!
4.  Randomly generate an integer e that satisfies:!

gcd (e, n) = 1 !
gcd (e, φ(n)) = 1!

5.  Compute d such that de ≡ 1 mod φ(n) !
!

Public key PKA = (e,n)!
Private key SKA = (d,n) !

!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 11	

RSA Digital Signature – Signature Generation!

Alice generates a signature on a
message m using her private key SKA:!

σ = sig(SKA, m) = md mod n#

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 12	

RSA Digital Signature – Signature Verification!

1. Bob uses Alice’s public key PKA, to compute: !
σe mod n = (md)e mod n = med mod n = m’#

!
2. He compares the received message m and σe
mod n#

•  If m = σe mod n à message accepted!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 13	

RSA Digital Signature – Summary!

[Picture credit: pintrest.com, hitentertainment.com]!

[m, σ = md mod n]!

Alice! Bob!

Signature generation!
Use Alice’s secret key

SKA to compute !
σ = md mod n!

Signature verification!
Use Alice’s public key PKA

to verify message!
ver(PKA, m, σ) = σe mod n!

If σe mod n = m accept
message!

#

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 14	

DATA COLLECTIONS!
Algorithms and Data Structures 2!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 15	

Data Collections?!
Collection of

chewed gums!
Collection of

pens!
Collection of

cassette tapes!
Collection of

old radios!

Shoes collection! Cars collection!Star wars collection!

[Pictures credit: http://www.smosh.com/smosh-pit/articles/19-epic-collections-strange-things]!

What is a data collection? !

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 16	

Data Collections?!
•  Data collection - an object used to store data (think data

structures)!
•  Stored objects called elements!
•  Some typically operations:!

•  add()
•  remove()
•  clear()
•  size()
•  contains()

•  Some examples: ArrayList, LinkedList, Stack, Queue,
Maps, Sets, Trees!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 17	

TREES!
Algorithms and Data Structures 2!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 18	

Trees!

[Pictures credit: https://static1.squarespace.com/]!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 19	

Trees!
•  Tree - a directed, acyclic structure of linked nodes!

–  Directed - one-way links between nodes!
–  Acyclic - no path wraps back around to the same node twice!

!
•  Can be defined recursively:!

–  A tree is either: !
•  Empty(null), or !
•  A root node that contains: !

– Data!
–  A left subtree !
–  A right subtree !
(The left and/or right subtree could be empty) !

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 20	

Trees Terminology!
•  Node - an object containing a data value and left/right children!
•  Root - topmost node of a tree !
•  Subtree – a smaller tree of nodes on the left or right of the current

node !
•  Parent - a node above the left and right subtrees, that both

subtrees are connected to!
•  Child - a root of each subtree!
•  Sibling - a node with a common parent !
•  Leaf - a node that has no children !
•  Branch - any internal node; neither the root nor a leaf !
•  Level or depth - length of the path from a root to a given node !
•  Height - length of the longest path from the root to any node!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 21	

Trees Terminology Example!

25	

12	

7	 8	 15! 5	

•  Nodes: {25, 10 ,12, 7, 8, 15, 5}!
•  Root: 25!
•  Subtrees: {10, 7, 8} and {12,

15, 5}!
•  Parents: 10 à {7, 8}, 12 à {15,

5}, 25à {10, 12}!
•  Children: {10, 12, 7, 8, 15, 5}!
•  Siblings: {7, 8}, {15, 5} and {10,

12}!
•  Leaves: {7, 8, 15, 5} !
•  Height: 3!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 22	

10	

Binary Trees!
•  Binary tree – a tree in which no node can have more than two

children!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 23	

Binary Tree Implementation!
•  A basic BinaryNode object stores:!

–  Data, !
–  Link to the left child!
–  Link to the right child !

•  Multiple nodes can be linked together into a larger tree!

class BinaryNode{

//Friendly data; accessible by other package routines
 Object element;

 BinaryNode left;

 BinaryNode right;

}

 !
10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 24	

Example: Class StrigTreeNode
StringTreeNode class
// A StringTreeNode object is one node in a binary tree of String

public class StringTreeNode{
public String data; // data stored at this node

Public StringTreeNode left; // reference to left subtree

Public StringTreeNode right; // reference to right subtree

// Constructs a leaf node with the given data

Public StringTreeNode(String data){

 this(data, null, null);
}

// Constructs a branch node with the given data and links
Public StringTreeNode(String data, StringTreeNode left, StringTreeNode right){

 this.data = data;

 this.left = left;

 this.right = right;
}

}

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 25	

Example: Class StringTree
// An StringTree object represents an entire binary tree of
String.
public class StringTree{

 private StringTreeNode root;
 //some methods

}

•  Observations:!
–  We can only talk to the StringTree, not to the node objects inside the

tree!
–  Methods of the StringTree create and manipulate the nodes, their data

and links between them!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 26	

Example: Expression Trees

•  In an expression tree:!
–  Leaves are operands (constants or variable names)!
–  All other leaves are operators (unary or binary)!
–  Example: (a * 5) + (c -7)!

+	

-	*	

a	 5	 c	 7	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 27	

TREE TRAVERSALS!
Algorithms and Data Structures 2!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 28	

Searching an Element in a Tree!
•  Example: find element 15 in the given tree!

•  Possible approaches:!
•  Depth-first search (DFS)!
•  Breath-first search (BFS)!

25	

12	

7	 8	 15! 5	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 29	

10	

Breath-First Search!
•  Example: find element 15 in the given tree!

•  Traverse all of the nodes on the same level
first, and then move on to the next (lower) level!

25	

12	

7	 8	 15! 5	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 30	

10	

Depth-First Search!
•  Example: find element 15 in the given tree!

•  Traverse one side of the tree all the way to the
leaves, followed by the other side!

25	

12	

7	 8	 15! 5	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 31	

10	

Tree Traversals!
•  Tree traversal - an examination of the

elements of a tree!
•  Used in many tree algorithms and methods !

•  Common orderings for traversals: !
•  Pre-order – process root node, then its left/right subtrees !
•  In-order – process left subtree, then root node, then right

subtree!
•  Post-order – process left/right subtrees, then root node !

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 32	

Tree Traversals Example!
•  Common orderings for traversals: !

•  Pre-order – process root node, then its left/right subtrees !
•  In-order – process left subtree, then root node, then right subtree!
•  Post-order – process left/right subtrees, then root node !

!
•  Pre-order: 25 10 7 8 12 15 5
•  In-order: 7 10 8 25 15 12 5
•  Post-order: 7 8 10 15 5 12 25

25	

12	

7	 8	 15! 5	

10	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 33	

Tree Traversals Trick!
•  To quickly generate a traversal, trace a path around the tree !
•  As you pass a node on the proper side, process it: !

–  Pre-order: left side!
–  In-order: bottom!
–  Post-order: right side !

25	

12	

7	 8	 15! 5	

• Pre-order: 25 10 7 8 12 15 5
• In-order: 7 10 8 25 15 12 5
• Post-order: 7 8 10 15 5 12 25

10	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 34	

Example: Printing a Tree!
•  Assume we have some class IntTree
•  Add a method print to the IntTree class that prints the elements

of the tree, such that!
–  Elements of a tree are separated by spaces!
–  A node's left and right subtree should be printed before it!

•  Example: tree.print(); //7 8 10 15 5 12 25

25	

12	

7	 8	 15! 5	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 35	

10	

Example: Printing a Tree!
// An IntTree object represents an entire binary tree of ints
public class IntTree{

 private IntTreeNode overallRoot; // null for an empty tree ...
 public void print(){

 print(overallRoot);
 System.out.println(); // end the line of output

 }

 private void print(IntTreeNode root){

 // (base case is implicitly to do nothing on null)

 if (root != null){

 // recursive case: print left, right, center

 print(overallRoot.left);

 print(overallRoot.right);
 System.out.print(overallRoot.data + " ");
 }

 }

 }

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 36	

Template for Tree Methods!
•  Tree methods are often implemented recursively with a

public/private pair!
–  The private version accepts the root node to process !

public class IntTree {
 private IntTreeNode overallRoot;
 ...

 public type name(parameters) {
 name(overallRoot, parameters);
 }

 private type name(IntTreeNode root, parameters) {
 ...

 }

}

! 10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 37	

Example: contains()
•  Add a method contains to the IntTree class that searches

the tree for a given integer, returning true if it is found. !

•  Example: If an IntTree variable tree referred to the tree
below, the following calls would have these results:!
–  tree.contains(25) à true

–  tree.contains(12) à true

–  tree.contains(4) à false
–  tree.contains(77) à false

!

25	

12	

7	 8	 15! 5	

10	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 38	

Example: contains()
// Returns whether this tree contains the given integer
public boolean contains(int value){

 return contains(overallRoot, value);
}

private boolean contains(IntTreeNode node, int value){
 if (node == null){

 return false; // base case: not found here

 }else if (node.data == value){

 return true; // base case: found here
 }else{

 // recursive case: search left/right subtrees

 return contains(node.left, value) || contains(node.right,
 value);
 }

}

! 10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 39	

SEARCH TREE ADT!
Algorithms and Data Structures 2!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 40	

Refresher: Binary Search!
•  Binary search – a search that finds a target value in a

sorted data collection by successively eliminating half of
the collection from consideration!

•  In the worst case how many elements will need to examined!
•  Example: Find value 25 in the array below: !

!

index! 0! 1! 2! 3! 4! 5! 6! 7! 8! 9! 10! 11!
value! -5 ! 0! 6! 7! 13! 20! 25! 56! 78! 124! 203! 255!

Min! Max!Mid!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 41	

Arrays.binarySearch()
// searches an entire sorted array for a given value
// returns its index if found; a negative number if not found
// Precondition: array is sorted

Arrays.binarySearch(array, value)

// searches given portion of a sorted array for a given value
// examines minIndex (inclusive) through maxIndex (exclusive)
// returns its index if found; a negative number if not found
// Precondition: array is sorted

Arrays.binarySearch(array, minIndex, maxIndex, value)

•  If the value is found, binarySearch()returns the index
•  If the value is not found, binarySearch()returns -(insertionPoint

+ 1), where insertionPoint is the index where the element would
have been, if it had been in the array in sorted order

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 42	

Binary Search Trees (BST)!

•  Binary search tree – a binary three that stores
element in a sorted order!

•  Every non-empty node X of some BST has the
property that: !
–  Elements of X's left subtree contain data smaller than

X's data!
–  Elements of X's right subtree contain data greater

than X’s!
–  X's left and right subtrees are also binary search

trees!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 43	

Example: Binary Search Trees?!

7	

18	

3	

5	

15! 19	

6	

8	2	

4	

3! 7	

6	 1	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 44	

Class BinarySearchTree
public class BinarySearchTree <T extends Comparable <? super T>> {

 private static class BinaryNode<T> {

 //build binary node}

 public BinaryNode<T> root;

 public BinarySearchTree() {

 root = null;

 }

 public void makeEmpty() {

 root = null;

 }

 public boolean isEmpty() {

 return root == null;

 }

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 45	

Class BinarySearchTree
public class BinarySearchTree <T extends Comparable <? super T>> {

 private static class BinaryNode<T> {

 //build binary node}

 public boolean contains(T x) {

 return contains(x, root);
 }

 public T findMin() {

 if(isEmpty()) throw new NullPointerException();

 return findMin(root).element;
 }

 public T findMax() {

 if(isEmpty()) throw new NullPointerException();

 return findMax(root).element;
 }

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 46	

Class BinarySearchTree
public class BinarySearchTree <T extends Comparable <? super T>> {

 private static class BinaryNode<T> {

 //build binary node}

 public void insert(T x) {

 root = insert(x, root);
 }

 public void remove(T x) {

 root = remove(x, root);
 }

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 47	

Method private contains(T x,
BinaryNode<T> node)

/**
* Internal method to find an item in a subtree.

* @param x is item to search for.

* @param node the node that roots the subtree.

* @return true if the item is found; false otherwise.

*/
private boolean contains(T x, BinaryNode<T> node) {

 if(node == null)

 return false;

 int compareResult = x.compareTo(node.element);

 if(compareResult < 0)

 return contains(x, node.left);

 else if(compareResult > 0)

 return contains(x, node.right);

 else return true; // Match
}

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 48	

Methods private findMin and findMax
/** * Internal method to find the smallest item in a subtree.
* @param t the node that roots the subtree.
* @return node containing the smallest item.
*/
 private BinaryNode<T> findMin(BinaryNode<T> t) {

if(t == null)
 return null;

else if(t.left == null)
 return t;

return findMin(t.left);

}

/** * Internal method to find the largest item in a subtree.
* @param t the node that roots the subtree.
* @return node containing the largest item.

*/
private BinaryNode<T> findMax(BinaryNode<T> t) {

if(t == null)

 return null;
while(t.right != null)

 t = t.rigth;
return t;

}

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 49	

Methods private insert(T x,
BinaryNode<T> t)

/**
 * Internal method to insert into a subtree.
 * @param x the item to insert.
 * @param t the node that roots the subtree.

 * @return the new root of the subtree.
 */
 private BinaryNode<T> insert(T x, BinaryNode<T> node) {

 if(t == null) {
 return new BinaryNode<>(x, null, null);
 }

 int compareResult = x.compareTo(node.element);

 if(compareResult < 0)

 node.left = insert(x, node.left);
 else if(compareResult > 0)
 node.right = insert(x, node.right);
 else

 return node; //duplicate, do nothing
}

 10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 50	

Methods private remove(T x,
BinaryNode<T> t)

•  Deletion – the hardest operation!
•  Once the node to delete has been found, we need to consider several possibilities:!

–  Node is a leaf – can be deleted immediately!
–  Node has one child – can be deleted after its parent adjusts a link to bypass it!
–  Node has two children – replace data of that node with the smallest data of the right subtree!

•  Lazy deletion – when an element should be deleted, it is left in the tree, and merely marked as being
deleted!

6	

8	2	

4	

3!

1	

6	

8	2	

4	1!

3	 5	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 51	

BALANCED AND AVL TREES!
Algorithms and Data Structures 2!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 52	

Tree Balance and Height
•  If the same data can be represented multiple ways, what is best? !

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 53	

Tree Balance and Height
•  If the same data can be represented multiple ways, what

is best?!

•  Height is key for how fast functions on our tree are! !
•  If we can structure the same data two different ways, we

may want to choose a balanced structure (better for BSTs)!

•  Can we enforce balance? !

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 54	

Tree Balance and Height
•  How might we define balance?!

•  If the heights of the left and right trees are balanced, the tree
is balanced, so: !

Abs(height(left) – height(right)) !

•  Anything wrong with this? !

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 55	

Tree Balance and Height
!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 56	

Tree Balance and Height
•  Is is not enough for the root to be balanced!
•  All nodes must be balanced !
•  Ideally, our “balance” property should say:!

–  For all nodes in the tree, level(left)= level(right)!

•  What is the problem with this? Not always enforceable!
!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 57	

AVL (Adelson-Velskii-Landis) Tree!
•  AVL tree – binary search tree with a balance

condition (AVL condition):!
–  The height of the left and right subtrees differ by at most 1!

•  The height of an empty tree defined to be -1!
•  All tree operations (exception insertion) can be

performed in O(logN)!

!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 58	

Example: AVL Trees??!
•  Is this an AVL tree?!

!

5	

8	2	

4	1	

3	

7	

Yes!!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 59	

Example: AVL Trees??!
•  Is this an AVL tree?!

!

7	

8	2	

4	1	

3	

No!!

5	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 60	

AVL Operations!
•  Since AVL trees are also BST trees, they should

support the same functionality:!
–  insert(T x, BinaryNode<T> node)
–  find(T x) – same as BST
–  delete(T x)

•  Problem: inserting the node could violate the AVL
property!

•  Solution: the AVL property maintained as we add
the node à simple tree modification, rotation!

!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 61	

AVL insert() Operation!
•  Possible insertions:!

1.  Insertion into the left subtree of the left child of X!
2.  Insertion into the right subtree of the left child X!
3.  Insertion into the left subtree of the right child of X!
4.  Insertion into the right subtree of the right child of X!

!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 62	

Single and Double AVL Rotations !

•  In cases 1 and 4, the insertions occurs on the “outside”:!
•  Left-left insertion (case 1)!
•  Right-right insertion (case 2) !

•  Outside insertions can be “fixed” using single rotations!

•  Similarly, in cases 2 and 3, the insertions occur on the
“inside”:!
•  Left-to-right (case 2)!
•  Right-to-left (case 3)!

•  Inside rotations require double rotations to fix imbalance!

•  Caution: with an insertion, a balance might not be off on the
parent à it could be somewhere up the tree !

•  !10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 63	

Left-to-left Insertion and AVL Rotation!

!

B	

C	

A	

•  Problem: not balanced anymore !
•  To correct this insertion – left rotation:!
•  B must become the root!
•  A must become the left child of B!

B	

A	 C	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 64	

General Rotation for Left-to-left Insertion!

!

k1	

k2	

X	 y	

Z	

A	

k1	

X	
y	 Z	

A	

k2	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 65	

Right-to-Right Insertion and AVL Rotation!

!

B	

A	

C	

•  Problem symmetric to the left-to-left insertion – not balanced
anymore!

•  To correct this insertion – right rotation:!
•  B must become the root!
•  A must become the right child of B!

B	

C	 A	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 66	

General Rotation for Right-to-Right Insertion!

k2	

k1	

X	
y	

Z	

A	

k1	

X	 y	

Z	

A	

k2	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 67	

Left-Right Insertion and Double AVL Rotation!

•  Problem: not balanced anymore !
•  Identifying what should be the new root is key !
•  Imagine “lifting” up the root !
•  Where will the children have to go to maintain

the search property? !

A	

C	

B	

B	

C	A	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 68	

A	

B	

C	

General Double Rotation for Left-Right Insertion!

5

k1	

k2	

k3	

A	 B	 C	 D	

k3	

A	

B	

D	

k1	

k2	

C	

5	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 69	

5

k2	

k3	

B	

A	 C	

D	

k1	

General Double Rotation for Right-Left Insertion!

k3	

A	

B	
D	

k1	

k2	

C	

5	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 70	

k2	

A	

B	
D	

k1	

k3	

C	

5	

D	A	

k1	

k2	

k3	

A	 B	 C	

Class AVLNode
private static class AvlNode<T> {
T element; //data in the node
AvlNode<T> left; //Left child
AvtlNode<R> right; //Right child
int height; //Height

// Constructors
AvlNode(T theElement) {

 this(theElement, null, null);
}

AvlNode(T theElement, AvlNode<T> left, AvlNode<T> right) {

 element = theElement;
 left = left;
 right = rightt;
 height = 0;

}

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 71	

Method insert
/**
 * Internal method to insert into a subtree.
 * @param x the item to insert.
 * @param t the node that roots the subtree.
 * @return the new root of the subtree.
 */

private AvlNode<T> insert (T x, AvlNode<T> t) {

 if (t == null)
 return new AvlNode(x, null, null);
 int compareResult = x.compareTo(t.element);

 if(compareResult < 0)
 t.left = insert(x, t.left);
 else if(compareResult > 0)
 t.right = insert(x, t.right);
 else
 return balance(t); //Duplicate, do nothing

}

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 72	

Method balance
private static final int ALLOWED_IMBALNCE = 1;

//Assume t is either balanced or within one of being balanced
Private AvlNode<T> balance(AvlNode<T> t) {

 if(t == null)
 return t;
 if(t.left.height – t.right.height > ALLOWED IMBALANCE)
 if(t.left.left.height >= t.left.right.height)
 t.rotateWithLeftChild(t);
 else
 t.doubleWithLeftChild(t);
 else(t.right.height – t.left.height > ALLOWED IMBALANCE)
 if(t.right.right.height >= t.right.right.height)
 t.rotateWithRightChild(t);
 else
 t.doubleWithRightChild(t);

 t.height = Math.max(t.left.height, t.right.height) + 1;
 return t;

}
10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 73	

Method rotateWithLeftChild
/**
*Rotate binary tree node with left child.
*For AVL tree, this is a single rotation for case 1.
*Update heights, then return new root.
*/

private AvlNode<T> rotateWithLeftChild(AvlNode<T> k2) {

 AvlNode<T> k1 = k2.left;
 k2.left = k1.right;
 k2.right= k2;
 k2.height = Math.max(k2.left.height, k2.right.height) + 1;
 k1.height = Math.max(k1.left.height, k2.right.height) + 1;
 return k1;
 }

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 74	

Method doubleWithLeftChild
/**
*Double rotate binary tree, first left child with its right child,
then node k3 with new left child.
*For AVL tree, this is a double rotation for case 2.
*Update heights, then return new root.
*/

private AvlNode<T> doubleWithLeftChild(AvlNode<T> k3) {

 k3.left = rotateWithrightChild(k3.left);
 return rotateWithLeftChild(k3);
 }

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 75	

AVL Trees – Concluding Remarks

•  If AVL rotation can enforce O(log n) height, what are the
asymptotic runtimes for our functions? !
•  insert(T x, AvlNode node) = O(log n) + balancing!
•  find(T x) : O(height) = O(log n)!

•  How expensive is balancing?!
•  There are at most three nodes and four subtrees to move

around à O(1) !

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 76	

SETS AND MAPS!
Algorithms and Data Structures 2!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 77	

Sets

•  Write a program to count the number of occurrences of
every unique word in a large text file (e.g. Java Reference
Manual) !

!
•  Possible approach: sets!

[Pictures credit: https://images-na.ssl-images-amazon.com/images/I/61rKnDmww9L.jpg]!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 78	

Sets

•  Write a program to count the number of occurrences of
every unique word in a large text file (e.g. Java Reference
Manual) !

•  Possible approach:!
•  Store the words in a collection !
•  Report the # of unique words!
•  Additionally: once you have this collection, allow auser

to search it, to see whether various words appear in the
text file!

•  Question: what is an appropriate data collections for this?!
•  Answer: Set!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 79	

Sets

[Pictures credit: https://www.beyondtheblackboard.com/components/com_virtuemart/shop_image/
product/full/SET---Box---Transparent-Background---8-22-11_0.png]!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 80	

Sets

•  Set - a collection of unique values (no duplicates allowed)
that can perform the following operations efficiently: !
•  add,
•  remove,
•  search (contains)

•  We don't think of a set as having indexes; we just add
things to the set in general and don't worry about order !

“happy”
“sunny”

“candy”

“smile”

“hug”

“day”
“early”

set.contains(“happy”)!

set.contains(“sad”)!

true!

false!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 81	

Set API Class Diagram

[Pictures credit: http://www.codejava.net/images/articles/javacore/collections/
Set%20API%20class%20diagram.png]!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 82	

Set Implementations

•  In Java, sets are represented by Set type in java.util
•  Set is implemented by HashSet and TreeSet classes!

•  HashSet: implemented using a "hash table" array!
•  Very fast: O(1) for all operations !
•  Elements are stored in unpredictable order!

•  TreeSet: implemented using a binary search tree!
•  Pretty fast: O(log N) for all operations!
•  Elements are stored in sorted order!

•  LinkedHashSet:
•  O(1) but stores in order of insertion, but slightly slower

than HashSet because of extra info stored!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 83	

Set Methods!

•  We can construct an empty set, or one based on a given
collection !

•  Examples:
Set<Integer> set = new TreeSet<Integer>(); // empty

List<String> list = new ArrayList<String>();
...
Set<String> set2 = new HashSet<String>(list);

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 84	

Set Methods!

add(value) adds the given value to the set !

contains(value)
returns true if the given value is found in
this set !

remove(value) removes the given value from the set !
clear() removes all elements of the set !
size() returns the number of elements in list !
isEmpty() returns true if the set's size is 0 !
toString() returns a string such as "[3, 42, -7, 15]" !

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 85	

Maps!
•  Write a program that stores, modifies and retrieves:!

•  Assignment grades for every student in this College!
•  Financial information for every client of some bank!
•  Browsing history for every user of some search engine!
•  Searches and transactions for every user of some online

retailer!
•  Activity and likes of every user of some online platform!

•  Question: What do these records have in common?!
•  The way we think about them à every data sample has a

unique user à unique ID (key) !
•  What is the appropriate data collection for this data? !
•  Maps!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 86	

Maps!

[Pictures credit: https://theodora.com/maps/new9/time_zones_4.jpg]!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 87	

Maps!
•  Map – a data collection that holds a set of unique keys and

a collection of values, where each key is associated with
one value!

•  Also known as:!
•  Dictionary!
•  Associative array!
•  Hash !

•  Basic map operations:!
•  put(key, value) - adds a mapping from a key to a value!
•  get(key) - retrieves the value mapped to the key!
•  remove(key) - removes the given key and its mapped

value!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 88	

Map Implementations!
•  In Java, maps are represented by Map type in java.util !
•  Map is implemented by the HashMap and TreeMap

classes!
•  HashMap - implemented using a "hash table” !

•  Extremely fast: O(1) !
•  Keys are stored in unpredictable order!

•  TreeMap - implemented as a linked "binary tree"
structure!
•  Very fast: O(log N) !
•  Keys are stored in sorted order!

•  LinkedHashMap - O(1) !
•  Keys are stored in order of insertion !

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 89	

Map Implementations!
•  Map requires 2 types of parameters: !

•  One for keys!
•  One for values!

•  Example:!
// maps from String keys to Integer values
Map<String, Integer> votes = new HashMap<String, Integer>();

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 90	

Map Methods!
put(key, value)

adds a mapping from the given key to the given value;!
if the key already exists, replaces its value with the given one !

get(key) returns the value mapped to the given key (null if not found) !

containsKey(key) returns true if the map contains a mapping for the given key !

remove(key) removes any existing mapping for the given key !

clear() removes all key/value pairs from the map !

size() returns the number of key/value pairs in the map !

isEmpty() returns true if the map's size is 0 !

toString() returns a string such as "{a=90, d=60, c=70}" !

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 91	

keySet and Values

•  keySet method returns a Set of all keys in the map!
•  It can loop over the keys in a foreach loop!
•  It can get each key's associated value by calling get

on the map!
•  Example:!
Map<String, Integer> ages = new TreeMap<String, Integer>();
ages.put("Marty", 19);
ages.put("Geneva", 2); // ages.keySet() returns Set<String>
ages.put("Vicki", 57);
for (String name : ages.keySet()) { // Geneva -> 2

 int age = ages.get(name); // Marty -> 19
 System.out.println(name + " -> " + age); // Vicki -> 57

}

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 92	

Methods keySet and Values

•  values method returns a collection of all values in the map !
•  It can loop over the values in a foreach loop!
•  No easy way to get from a value to its associated key(s)!

keySet() 	
returns a set of all keys in the
map 	

values() 	
returns a collection of all
values in the map 	

putAll(map) 	 adds all key/value pairs from
the given map to this map 	

equals(map) 	 returns true if given map has
the same mappings as this one 	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 93	

Example: Maps!

•  Many words are similar to other words!
•  For example word wine can become:!

•  dine, fine, line, mine, nine, pine, or vine!
•  wide, wife, wipe, or wire!
•  wind, wing, wink, or wins !

•  Write a program to find all words that can be changed into
at least 15 other words by a single one-character
substitution!

•  Assume that:!
•  We have a dictionary consisting of approximately 89,000

different words of varying lengths!
•  Most words are between 6 and 11 characters!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 94	

[Coding Example]!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 95	

HASHING AND HASH FUNCTIONS!
Algorithms and Data Structures 2!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 96	

Introduction to Hashing!

•  Suppose we have a large set of items M #

•  Set M contains the subset D, where D << M of items that
we actually care about !

•  Example: M may be English dictionary, and D maybe a
set of English words we use in everyday life!

•  Problem: How to store data such that we use only O(D)
memory, while achieving fast O(1) access!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 97	

Introduction to Hashing!
•  Memory: A Hash Table !

•  Consider an array of size c * D #
•  Each index in the array corresponds to some

element in M that we want to store !
•  The data in D does not need any particular

ordering!

•  Possible approaches:!
•  Unsorted array – search takes O(D)!
•  Sorted array – search still takes O(D)!
•  Random mapping – search still takes O(D)

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 98	

Introduction to Hashing!
•  Another possible approach – pseudo-random

mapping using a hash function h(x)!

M	 D	h(x)	

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 99	

Introduction to Hash Functions!
•  Hash function - maps the large space M into

target space D!

h(x)	

[Pictures credit: https://upload.wikimedia.org/wikipedia/commons/3/37/African_Bush_Elephant.jpg!
https://aos.iacpublishinglabs.com/question/aq/1400px-788px/what-are-elephant-tusks-used-
for_3c174bec-bd85-4fab-a617-7a1a33f14c62.jpg?domain=cx.aos.ask.com]!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 100	

Introduction to Hash Functions!
•  Hash function - maps the large space M into

target space D!

•  Desired properties of hash functions:!
•  Repeatability: !

•  For every x in D, it should always be h(x) = h(x)!
•  Equally distributed: !

•  For some y, z in D, P(h(y)) = P(h(z)) !
•  Constant-time execution: h(x) = O(1) !

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 101	

Simple Hash Function!
/**
* A hash method for String objects.
* @param key the String to hash.
* @param tableSize the size of the hash table.
•  @return the hash value.

*/
public static int hash(String key, int tableSize) {
 int hashVal = 0;

 for(inti=0; i<key.length();i++)
 hashVal = 37 * hashVal + key.charAt(i);

 hashVal %= tableSize;
 if(hashVal < 0)
 hashVal += tableSize;
 return hashVal;

}
10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 102	

Problems with Hash Functions!
•  Hash function – can be thought of as a “lossy

compression function”, since |M| << |D|!

!
•  Do you see any problems here? !
•  Yes, collision!!
!

D!

M!

m3#

m1#

m2#

d1#

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 103	

Resolving Collisions!
•  Hash function – can be thought of as a “lossy

compression function”, since |M| << |D|!
•  Problem – collision!

•  Possible approaches to resolve collisions:!
•  Store data in the next available space !
•  Store both in the same space!
•  Try a different hash!
•  Resize the array !

!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 104	

Resolving Collisions – Linear Probing!
•  Linear probing – a simple approach !

•  When a collision occurs, find the next available
spot in the array!

!
505	

79	

38	

25	

h(x)	=	key%10	

5:	505	

6:	25	

7:		

8:38	

9:	79	

4:		

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 105	

Problems with Linear Probing!
•  Linear probing – a simple approach !

•  When a collision occurs, find the next available spot
in the array!

•  Searching for some element x:!
•  Go to position h(x), then cycle through all entries

until you either find the element, or the blank space!

•  Adding an element y, that should go to the position
taken by the colliding element:!
•  Add element y to the next available spot - clustering!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 106	

Problems with Linear Probing!
•  If a cluster becomes too large, it may have

negative consequences on the hashing
performance:!
•  The chances of collision with the cluster

increase !

•  The time it takes to find something in the
cluster increases, and it isn’t O(1)!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 107	

Quadratic Probing!
•  Whereas linear probing increments indices by one each

time, quadratic probing goes through the squares !

•  For example, linear probing would check index 3, then:!
•  3+1, !
•  3+2, !
•  3+3, !
•  3+4 etc.!

•  Quadratic probing would check index 3, then!
•  3+1, !
•  3+4 !
•  3+9 !
•  3+16 etc.!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 108	

Problems with Quadratic Probing!
•  Example: Consider a hash function for ints, !

h(x) = x%7!
!
•  Insert, 3, 10,17,24,31,38!

•  What happens? Where does 31 go?!
•  31%7=3 !
•  3+1%7 = 4 !
•  3+2%7 = 5 !
•  3+4%7 = 0 !
•  3+9%7 = 5 !
•  3+16%7 = 5 !

•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens?

•  Where does 31 go?
•  31%7 = 3
•  3+1%7 = 4
•  3+2%7 = 5
•  3+4%7 = 0
•  3+9%7 = 5
•  3+16%7 = 5

QUADRATIC PROBING

0: 17
1
2
3: 3
4:10
5: 24
6

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 109	

Problems with Quadratic Probing!
•  Secondary clustering problem!

•  Even when there is space available in the
table, quadratic probing is not guaranteed to
find an opening !

•  In fact, half the array has to be empty to
guarantee an opening !

•  This approach reduces the O(n) problem of
linear probing, but it introduces even larger
memory constraints !

•  .!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 110	

Secondary Hashing!

•  If two keys collide in the hash table, then a
secondary hash indicates the probing size !

•  Need to be careful, possible for infinite loops with
a very empty array !

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 111	

Chaining!

•  Rather than probing for an open position, we
could just save multiple objects in the same
position !

•  Some data structure is necessary here !
•  Commonly a linked list, AVL tree or secondary !
hash table!
Resizing isn’t necessary, but if you don’t, you will get
O(n) runtime!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 112	

Hash Functions!
•  In reality, good hash functions are difficult to

produce !
•  We want a hash that distributes our data evenly

throughout the space !
•  Usually, our hash function returns some integer,

which must then be moded to our table size !
•  When discussing hash table efficiency, we call

the proportion of stored data to table size the load
factor!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 113	

Java HashTable Class!
•  Implements a hash table, which maps keys to

values!

•  Example: a HashTable of integers!
Hashtable<String, Integer> number = new
HashTable<String, Integer>();
numbers.put(“one”, 1);
numbers.put(“two”, 2);
numbers.put(“three”, 3);

Integer n = numbers.get(“two”);
if(n != null) {

System.out.println(“two = ” +n);
}

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 114	

[Meme	credit:	imgflip.com]	

Your Questions!

10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 115	

References and Reading Material!

•  Mark Allen Weiss, Data Structures and Algorithm Analysis in Java, chapters 4, 5 and 9!
•  Oracle, java.util Class Collections, [Online]

http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html!
•  Oracle, Java Tutorials Collections, [Online]

https://docs.oracle.com/javase/tutorial/collections/!
•  Vogella, Java Collections – Tutorial, [Online]

http://www.vogella.com/tutorials/JavaCollections/article.html!
•  TutorialsPoint, Data Structures and Algorithms - AVL Trees, [Online],

https://www.tutorialspoint.com/data_structures_algorithms/avl_tree_algorithm.htm!
•  AVL Trees Animation, [Online], https://www.cs.usfca.edu/~galles/visualization/AVLtree.html!
•  Sets, [Online], https://web.cs.wpi.edu/~cs2102/common/kathi-notes/sets.html!
•  Java Tutorials, Sets, [Online], https://docs.oracle.com/javase/7/docs/api/java/util/Set.html!
•  Java Tutorials, Interface Map, [Online],

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html!
•  Problem Solving with Algorithms and Data Structures, Hashing, [Online],

http://interactivepython.org/courselib/static/pythonds/SortSearch/Hashing.html (note: code in
Python)!
10/25/17	 CS	5010,	Fall	2017	-	Lecture	8	 116	

