Northeastern University

Design Patterns

Maria Zontak

Credits:
CS5004 course built by Dr. Therapon Skotiniotis (Northeastern)
Effective Java
Clean Code

CSE331 Dr. H. Perkins (UW)

Northeastern University

Prelude: What is the complexity of the code below?

new LinkedList<Integer>();

List<Integer> list
for (int 1 = 0; 1 < list.size(); i++)
int value = list.get(i);
5 2 == 1) {

1f (value %
list.remove (1) ;

{

}
}

— The complexity is O(n?)
— Can you spot a bug?
— What can we do?

Northeastern University

Iterator interface

hasNext () | returns true if there are more elements to examine

next () returns the next element from the collection (throws a
NoSuchElementException if there are none left to
examine)

remove () | removes from the collection the last value returned by

optional next () (throws Il1legalStateException if next ()has
NOT been called yet)

Iterator

* Remembers a position within a collection, and allows to:
» get the element at that position
» advance to the next position
» (optionally) remove the element at that position

* Allows to traverse the elements of a collection, regardless of its

implementation = promotes abstraction

Northeastern University

Java Collections framework

ainterfaces Interfaces ainterfaces ginterfaces
Collection Map lterator
T — f
| I |
sinterfaces «interfaces «interfaces I ainterfaces sinterfaces
List Set P SortedSet | | SortedMap Listlterator
Il
¥ T T | — %
e B S R N e
i - N — L__.I !
| l | |
i' - ' ' Concrete
i LinkedList HashSet TreeSet HashMap Treelap Classes
ArrayList #_‘,J;;— | T i R _l_
- e i —
. < AbstractSequentialList Abstractset AbstractMap -
- Abstract Classes
AbstractList f— AbstractCollection

Northeastern University

Interface Iterable<E>

interface List<E> extends |Iterable<E> |{

-

public abstract class AList<E> implements List<E> {
}

public class LinkedList<E> extends AList<E> {

}

To implement Iterable you should override:

lterator () Returns an iterator Iterator<E> over a set of
elements of type E.

Northeastern University

GenericlListlterator Implementation

interface List<E> extends Iterable<E> /{
}

public abstract class AList<E> implements List<E> {

public class LinkedList<E> extends AList<E> {

public Iterator<E> iterator () ({
return new GenericlistIterator (this);
}

Northeastern University

Linked list iterator

public class LinkedList<E> extends AList<E> {

private class GenericListIterator implements Iterator<kE>
private Node current; // current position in list

public GenericListIterator ()

}
public boolean hasNext () {

}

//inner class
private class Node ({
current = front; public E data;
public Node next;

return current != null;)

public E next () {

}

if ('hasNext ()) throw new NoSuchElementException (“..”);
E result = current.data;
current = current.next;

return result;

public void remove () { // not implemented for now

}

throw new UnsupportedOperationException (“Not Now”) ;

Northeastern University

Improving complexity and fixing the bug!

Before:
List<Integer> list = new LinkedList<Integer> ()

(int 1 = 0; 1 < list.size(); 1i++) {

int value list.get(i);

if (value % 2 == 1) {
list.remove (1) ;

for

LS

}
After:

List<Integer> 1list = new LinkedList<Integer>()

Tterator<Integer> 1tr;
(itr = list.iterator(); itr.hasNext();)

int value = itr.next();

[¢) [

1if (value % 2 == 1) {
itr.remove(); //implemented in Java

for

Complexity now is O(n)

o
14

{

Northeastern University

Copy Constructor — Simplified version

public ArrayList(Collection<? extends E>_c) { ;Anytype
this ((int) (c.size() * 1.1f));//use eﬁst:m'g\~ which is a
constructor
addAll (c); //Add each element in the supplied subclass of E

Collection to this List, in order that 1is
specified by collection's Iterator.

}

public void addAll (Collection<? extends E> c) { ArrayListis

Tterator<? extends E> itr = c.iterator(); implemented using
int csize = c.size(); b??ﬁda”a%‘N“h

, , possibility to reallocate
ensureCapacity(csize); :
| | | | to a bigger array upon
int 1ndex = this.size; reaching maximum
while (itr.hasNext ()) { capacity

elementData[index++] = itr.next(); //get element

and copy it
}

this.size += csize; //do not forget to update the size
10

Northeastern University

Some limitations...

 We can iterate only in one direction (unless you use
ListIterator)

* Iteration can be done only once, till the end of the series

— to iterate again, get a new lterator

* [terator returned by iterator() is fail-fast: if the list is
structurally modified at any time after the iterator is created, in
any way except through the iterator's own remove methods,
the iterator will throw a ConcurrentModificationException.

11

http://docs.oracle.com/javase/7/docs/api/java/util/ListIterator.html
http://docs.oracle.com/javase/7/docs/api/java/util/ConcurrentModificationException.html

Northeastern University

The "for each" loop — requires Iterator

for (type name : collection) {

statements;

J

— A clean syntax for looping over the elements of a set, List,
array, or other collection that implements Iterable interface

List<Integer> grades = new ArraylList<>(14);

for (int grade : grades) ({
System.out.println ("Student's grade: " + grade);
}

Item 46[EJ]: Prefer for-each loops to traditional for loops

12

Northeastern University

Why for-each?

// Can you spot the bug? (From EJ, Item 46)
enum Suit { CLUB, DIAMOND, HEART, SPADE }

enum Rank { ACE, DEUCE, THREE, FOUR, FIVE, SIX, SEVEN,
EIGHT,NINE, TEN, JACK, QUEEN, KING }

Collection<Suit> suits = Arrays.aslList(Suit.values{()):
Collection<Rank> ranks = Arrays.asList (Rank.values{());

List<Card> deck = new ArrayList<Card>();
for (Iterator<Suit> i = suits.iterator(); i.hasNext();)

for (Iterator<Rank> j = ranks.iterator(); j.hasNext())
deck.add (new Card(i.next (), j.next()));

next () is called too many times
> NoSuchElementException Will be thrown

13

Northeastern University
One more...

// Same bug, different symptom! (from EJ)
enum Face { ONE, TWO, THREE, FOUR, FIVE, SIX }
Collection<Face> faces = Arrays.asList (Face.values{());

for (Iterator<Face> i = faces.iterator(); i.hasNext();)
for (Iterator<Face> j = faces.iterator(); j.hasNext(),)
System.out.println(i.next() + " " + j.next());

What will happen now?
The program will print 6 times from “ONE ONE” to “SIX SIX”

14

Northeastern University

for - each for rescue

// Preferred idiom for nested iteration on
// collections and arrays (from EJ)
for (Suilt sult : suits)
for (Rank rank : ranks)
deck.add (new Card(suit, rank)):;

However, comes with 3 limitations (things you CANNOT do):

1. Filtering—traversing and removing selected elements (use
an explicit iterator instead)

2. Transforming—traversing and replacing some/all values
3. Parallel iteration— traversing multiple collections in parallel

15

Northeastern University

List interface

// Represents a list of values.

public interface List<E> extends Iterable<E> {
public void add(E value);
public void add(int 1ndex, E wvalue);
public void addAll (Collection<? extends E> c)
public E get(int index);
public int indexOf (E value);
public boolean isEmpty (),
public Iterator<E> iterator();
public void remove (int index);
public void set(int index, E value);
public int size();

Northeastern University

Adding Static Factory to List interface

// Represents a list of values.
public interface List<E> extends Iterable<E> {

public
I

//static factory method

return new LinkedList<E> () ;

static <E> List<E> createlinkedList () {

N

public
public
public
public
public
public
public
public
public
public

void add(E wvalue) ;
volid add(int index, E wvalue
volid addAll (Collection<? exten E>

E get (int index);

int indexOf (E value);
boolean isEmpty () ; We do NOT know

Iterator<E> iterator () ; concrete type
volid remove (i1nt index) ;

vold set (int index, E wvalue);
int size();

19

Northeastern University

And what EJ thinks about Static Factory methods?

Item 1: Consider (using) static factory methods instead of constructors
Advantages of static factory methods:

* Have names.

 NOT required to create a new object each time they are invoked

= This allows immutable classes to use preconstructed instances, or to cache
instances, and dispense them repeatedly to avoid duplicate objects (better
performance if creating an instance is expensive)

— Can be used to create Singletons

-2 Instance — control classes (Class has control over created instances).

= You might want to consider NON-Public constructor (Item 4) or even private
to enforce non- insatantiability

e Can return an object of ANY subtype of their return type

20

Northeastern University

But there are some disdvantages

* Classes without public or protected constructors cannot be
sub-classed.

- “Blessing in disguise” — encourages usage of composition over

inheritance

* They are not salient compared to other static methods.

KNOW PROS and CONS of your DESIGN

21

Northeastern University

Open-Closed Principle

Software entities should be:
* Open for Extension
But
* Closed for Modification
- To add NEW features to your system:
* Add new classes or reuse existing ones in new ways
* If possible, do NOT make changes by modifying existing
ones. Why?

e Existing code works and changing it can introduce
bugs and errors.

22

Northeastern University

Find Problems with the method below?

//Payroll.java From CleanCode Listing 3-4
// What OO Design principles are violated here?
public Money calculatePay (Employee e) {

(r.getType())
case C :

switch

turn calculateCommissionedPay (e) ;

case HOURLY: return C

switch will
case SALARIED: return calculateSa
default: throw new InvalidEmployeeType (e.type); ALWAYS dO
} more than
} one thing

®* Itislarge and when new employee types are added - it will grow

— Violates the Open Closed Principle (OCP) because must change
whenever new types are added

* Problem might repeat in other Employee methods ispayday, and

deliverPay. -

Northeastern University

Abstract Factory [GOF]

* The factory will use the switch statement to create
appropriate instances of the derivatives of Employee

 The various methods, such as calculatePay, isPayday, and
deliverPay, Will be dispatched polymorphically through the
Employee interface.

 switch statements can be tolerated if
— they appear only once
— are used to create polymorphic objects

— are hidden behind an inheritance relationship so that the
rest of the system can NOT see them

e This rule might be violated

24

Northeastern University

Abstract Factory [GOF]

//Employee and Factory - Clean code Listing 3-5
public interface Employee {

boolean isPayday ()

Money calculatePay () ;

vold deliverPay (Money pay):;

}

Public interface EmployeeFactory {
Employee makeEmployee (EmployeeRecord r);
}

public class ConcreteEmployeeFactory implements EmployeeFactory {
Employee makeEmployee (EmployeeRecord r) {
switch (r.getType()) {
case COMMISSIONED:return new CommissionedEmployee (r);
case HOURLY: return new HourlyEmployee (r);
case SALARIED: return new SalariedEmploye(r) ;
default: throw new InvalidEmployeeType (r.getType()):

25

Northeastern University

Abstract Factory vs. Factory method

Factory Method pattern:
* Asingle method

* Uses inheritance and relies on a subclass to handle the desired object
instantiation.

Abstract Factory pattern:
* Encapsulates many factory methods
* Has a single responsibility of creating a FAMILY of objects.

* Another class delegates the responsibility of object instantiation to
the Factory class

* The usage of Employee is decoupled from constructing Employee

* Promotes Single Responsibility Principle

26

Northeastern University

Abstract Factory Example:

public Race() {
Bicycle bikel
Bicycle bike2 = new Bicycle() ;

new Bicycle();

class TourDeFrance extends Race {

public TourDeFrance() {
Bicycle bikel = new RoadBicycle() ;
Bicycle bike2 = new RoadBicycle() ;

Problem:
class Cyclocross extends Race { We are reimplementing the

public Cyclocross() { " tori
Bicycle bikel = new MountainBicycle() ; consrlm:ornweyery
Race subclass in order to use a

Bicycle bike2 = new MountainBicycle() ; .
different subclass of Bicycle

27

Northeastern University

Abstract Factory Example:

Bicycle createBicycle () { return new Bicycle(); }
public Race() {

Bicycle bikel = createBicycle() ; Use FaCtory methOd to
Bicycle bike2 = createBicycle(); avoid dependency on
y specific new kind of

}
HOW does this help?

class TourDeFrance extends Race {

bicycle in constructor

Subclasses can override

Bicycle createBicycle() { Factory method and
return new RoadBicycle() ;
} return any subtype of
public TourDeFrance() { super(); } .
} Bicycle

class Cyclocross extends Race {
Bicycle createBicycle () {
return new MountainBicycle() ;
}
public Cyclocross() { super(); }
}

28

Northeastern University

Abstract Factory Example:

Encapsulation: move the factory method into a separate class - a factory object
Advantages:

Can pass factories around as objects for flexibility:
e Choose a factory at runtime

* Use different factories in different objects (e.g., races)
Promotes composition over inheritance
Separation of concerns

class BicycleFactory {
Bicycle createBicycle() {
return new Bicycle() ;
}
}
class RoadBicycleFactory extends BicycleFactory {
Bicycle createBicycle() {
return new RoadBicycle() ;
}
}
class MountainBicycleFactory extends BicycleFactory {
Bicycle createBicycle() {
return new MountainBicycle() ;

}

29

Northeastern University

Abstract Factory Example:

class Race {

BicycleFactory bfactory;
public Race (BicycleFactory f) {
bfactory = £;
Bicycle bikel = bfactory.createBicycle() ;
Bicycle bike2 = bfactory.createBicycle() ;

}

Promotes composition
over inheritance

public Race() { this(new BicycleFactory()):; }
\ .

class TourDeFrance extends Race {
public TourDeFrance () {
super (new RoadBicycleFactory()) ;

}
class Cyclocross extends Race {

public Cyclocross() {
super (new MountainBicycleFactory()) ;
}

}

30

Northeastern University

Abstract Factory = Separation of Concerns:

Separate control over Bicycles and Races:
e Can swap different Factories for different Races
 What about a FreeRace (can have ANY type of bicycle)?

class TourDeFrance extends Race {
public TourDeFrance () {
super (new RoadBicycleFactory()); // or this(..)

public TourDeFrance (BicycleFactory f) {

super (f) ;
}

31

Northeastern University

Mid-way summary
v Creational patterns (constructing objects)

e Behavioral patterns (affecting object semantics)
— Already seen: Observer

— Now Interpreter vs. Visitor

32

Northeastern University

Traversing composites

e Goal: perform operations on all parts of a composite
e |dea: generalize the notion of an iterator — process the
components of a composite in an order appropriate for

the application

e Separate Processing from Traversing

33

Northeastern University

[J []
What is a composite?
parent
+ operation()
Composite Pattern (structural pattern): -
Very useful in GUI Libraries (Swing, AWT):
Leaf Composite
+ operation() + operation() 1
Object * add) e
Recursive Composition ,{} I ;ee:lo,:’ifé())
(Composite Design Pattern) +
Component

R |

<= Container \\ AWT Components. ..
- | PP o
' Panel Window ‘". e JComponent. ~ TT°- R
;‘ ﬁl # L | % |] | \\‘1
, Applet Frame Dialog !/ JLabel JAbstractButton JPanel JTextComponent JScrollPane
S - .
" JApplet JFrame JD1ang:l ‘. JButton 3JIToggleButton JTextField JTextArea o

- 34

= -
.

Northeastern University

Simple Arithmetic Calculator

Our calculator deals only with integers and supports the following operations:

* addition given two sub-expressions perform mathematical addition
* subtractions given two sub-expressions perform mathematical subtraction
* unary minus given one sub-expression return it's negative value

35

Northeastern University

Simple Arithmetic Calculator

4 -1 + 2 + 4 - 2;

36

Northeastern University

Simple Arithmetic Calculator Herarchy

public interface Expression {
int evaluate() ;
String asString() ;

class Value implements Expression {
private int value;
}
class UnaryOp implements Expression ({
private Expression singleExp;
}
abstract class BinaryOp implements Expression {
protected Expression leftExp;
protected Expression rightExp;

}
class PlusOp extends BinaryOp {

}

class MinusOp extends BinaryOp {

}

37

Northeastern University

Operations on AST

Need to write code for each entry in this table

Types of Objects
UnaryOp PlusOp

evaluate

Operations

asString

e What code should we group together?
e the code for a particular operation, or
e the code for a particular expression
— Do we group the code into rows or columns?

e Given an operation and an expression, how do we “find”
the proper piece of code?

38

Northeastern University

Procedural Design vs. Object Oriented

Procedural code makes it OO code makes it easy to
easy to add new methods add new classes without
without changing the existing changing existing methods.

data structures.

39

Northeastern University

Interpreter and Visitor patterns

Interpreter: Visitor:
collects code for similar collects code for similar
objects, spreads apart code operations, spreads apart
for similar operations code for similar objects
— Easy to add types of — Easy to add operations,
objects, hard to add hard to add types of
operations objects

Objects

Objects
! | UnaryOp | PlusOp

evaluate ? 2
]

asString

e S

Selecting between interpreter and procedural:
e Are the algorithms central, or are the objects?
 What aspects of the system are most likely to change?

40

Northeastern University

Interpreter pattern

asString

Objects

S S

Add a method to each class for each supported operation

class UnaryOp implements Expression

int evaluate() { ... }
String asString() { ... }

}

abstract class BinaryOp implements Expression {

) Dynamic dispatch chooses

class PlusOp extends BinaryOp { the right implementation, for
int evaluate() { ... } someExpr.evaluate ()

String asString () { ... }
Overall type-checker spreads
across classes

41

Northeastern University

Objects

| UnaryOp | PlusOp

Procedural pattern = —

Create a class per operation, with a method per operand type:

class Evaluator {
int evaluatePlusOp (PlusOp op) {

}

int evaluateMinusOp (MinusOp op) {

}

int evaluateUniaryOp (UnaryOp op) {

}

int evaluateValue (Value val) {

}
}

How to invoke the right method for an expression someExpr?

42

Objects
| CondExpr | EqualOp

Procedural pattern = —

Northeastern University

class Evaluator {

int evaluateExpression (Expression expr) {
if (e instanceof PlusOp) return evaluatePlusOp ((PlusOp)expr);
else if (e instanceof MinusOp) return evaluateMinusOp ((MinusOp)expr) ;
else if (e instanceof UnaryOp) return evaluateUnaryOp ((UnaryOp)expr)
else if (e instanceof Value) return evaluateValue ((Value)expr):;
else

* Maintaining this code is tedious and error-prone.
 The cascaded if tests are likely to run slowly.

e This code must be repeated in asstring and

every other operation class (remember switch problem)

43

Northeastern University

Visitor Pattern

* Visitor encodes a traversal of a hierarchical data structure
* Nodes (objects in the hierarchy - expressions) accept visitors
* Visitors visit nodes (objects)

class someExpression implements Expression {
void accept(Visitor v) {

_ _ someExpr .accept (v)
for each child of this node {

child.accept (V) ; traverses the structure
} rooted at exp,
} v.visit(this); performing v's operation
} on each element of the
class someVisitor implements Visitor{ structure

void visit (someExpression exp) {
perform work on exp

}

44

Northeastern University

Example: accepting visitors

class Value implements Expression { Traversing:
void accept (Visitor v) ({ All children (components)
v.visit (this) ; should accept the visitor
}

}

class UnaryOp implements Expression

Algorithm:
Let visitor do the job

;oid accept (Visitor v) {
singleExp.accept (v) ;
v.visit (this);

}

class PlusOp extends BinaryOp { ° Ihevisitor has a visit method for
each kind of expression, thus

;oid accept (Visitor v) {

leftExp.accept (V) ; picking the_ right code for this kind
rightExp.accept (V) ; of expression
v.visit(this); - Overloading makes this look more
} } magical than it is...
class MinusOp extends BinaryOp{ =+ Clients can provide unexpected
visitors

//same accept as in PlusOp
45

Northeastern University

Sequence of calls to accept and visit

a.accept (v)
b.accept (v) °
d.accept (v)
v.visit (d) o o
e.accept (v)
v.visit (b)
c.accept (v)
f.accept (v)
v.visit (f)

v.visit (c)
v.visit (a)

Sequence of calls to visit: d e b,fca

46

Northeastern University

Example: Implementing visitors

Overloading for ALL possible CONCRETE operations:
class EvaluatorVisitor implements Visitor {
vold visit (Value op) { .. }
void visit (UnaryOp op) { .. }
void visit (PlusOp op) { .. }
vold visit (MinusOp op) { .. }
}
class AsStringVisitor 1mplements Visitor {
void visit (Value op) { .. }
vold visit (UnaryOp op) { .. }
vold visit (PlusOp op) { .. }
(

vold visit (MinusOp op) { .. }

47

Northeastern University

Why not to abstract out?

class PlusOp extends BinaryOp ({ class MinusOp extends BinaryOp {

{ vold accept (Visitor v) {
leftExp.accept (v
rightExp.accept (
v.visit (this);

vold accept (Visitor v)
leftExp.accept (v);
rightExp.accept (v);
v.visit (this);

) ;
V) ;

The accept in both classes is identical
—>Why NOT to remove duplicate code and move it into abstract class?

abstract class BinaryOp implements Expression {

You CANNOT abstract this code, because

volid accept (Visitor v) {

leftExp.accept (v) ; overloading in java is done using
rightExp.accept (v) ; STATIC binding (static polymorphism)
v.visit (this);

\ Static binding happens at compile time

) and uses class to decide the type

Northeastern University

How will we get the result?

 Have a private field that accumulates the results and return it with

getter
* Create generic Visitor interface with type parameter for return type
visit:
public interface GenericVisitor<T>{
T visit (Value op);
T visit (Unary op);
}
class EvaluatorVisitor 1mplements GenericVisitor<Integer> {
Integer visit (Value op) {
return op.getValue();
}
Integer visit (UnaryOp op) { .. }

Integer visit (PlusOp op) { .. }
Integer visit (MinusOp op) { .. } 20

Northeastern University

Finally

class Value 1mplements Expression {

int evaluate () {

return accept (new EvaluatorVisitor()):;

}
<T> T accept (GenericVisitor<T> v) {

return v.visit(this);

Similar to static
methods, you can
define specific
generic type for
instance methods

50

Northeastern University

Alternative Visitor Pattern

* Sometimes traversal is delegated to visitor:

class someExpression implements Expression ({
void accept(Visitor v) {
v.visit (this) ;
}
}
class someVisitor implements Visitor{
void visit (someExpression exp) {
for each child of this node (exp) {
perform work on this child

}

51

