
CS5010 – PDP

Introduction to Design

Maria Zontak
Slides inspired by slides of H.Perkins (UW, CS331)

and MIT 16.355 software engineering course

Disclaimer
• Design - a creative problem-solving.

• Bad news:

No recipe for doing it (maybe some in functional design)

• Good news:

Expertise and knowledge (from experience) of designers are
determinant for success.

Design problem formulation

How to decompose system into parts, each with a lower
complexity than the whole system, such that:

• Interaction between the parts is minimized

• Combination of these parts together solves the problem

•No universal way of doing this ☺

Rule of thumb:

•Do NOT think of system in terms of components that
correspond to steps in processing.

•Do provide a set of modules that are useful for writing many
programs.

Modules

A module - relatively general term for a class or a type or any
kind of design unit in software

A modular design focuses on what modules are defined, what
their specifications are, how they relate to each other

– Not the implementations of the modules

– Each module respects other modules’ abstraction barriers!

– Each module should provide a single abstraction (an ADT)

– Each method should do one thing well

Ideals of modular software
Decomposition – design allows to break down a problem
into modules to reduce complexity and allow teamwork

Composability – “Having divided to conquer, we must
reunite to rule [M. Jackson].” Ideally in various way!
Necessary condition:
Self-contain (modular) – one module can be developed
and examined in isolation

Continuity/Locality – a small change in the
requirements should affect ideally ONE or a small
number of modules

Isolation – an error in one module should be as
contained as possible

Coupling and Cohesion

•Cohesion

•How well a module encapsulates a single notion/responsibility

•Degree to which the elements of a module belong together

•Coupling

• The degree to which a module interacts with or depends on another
modules

OO design should be divided into modules/classes such that
Coupling between modules/classes is minimized
Cohesion within modules/classes is maximized

In your object oriented design
should the following properties be minimized/maximized?

Let’s put that into practice…
“Pay Attention” program

Provide the student in PDP course occasional
reminders on his/her laptop screen to take a
break from any unrelated activity, and
encourage him/her to concentrate on the
ongoing lecture…

Any suggestions for a design?

1. A class that is responsible to display a
message “Pay Attention to the Lecture”

2. A class that is responsible to call that
method from time to time

Reminder

Timer

“Pay Attention” Program - Naïve Design
public class Reminder {

public void display() {

System.out.println(“Please Pay Attention to the Lecture!");

}

}

public class Timer {

private Reminder reminder = new Reminder();

public void start() {

while (true) {

...

if (enoughTimeHasPassed) {

reminder.display();

}

...

}

}

}

public class Main {

public static void main(String[] args) {

Timer timer = new Timer();

timer.start();

}

}

Class/module dependency diagram:

Can we improve design/reduce dependencies?

•Is Timer REUSABLE (for another application)?

•Can Timer and Reminder be DECOUPLED?

Reminder

Timer

Main

Marks dependency
(coupling)

“Pay Attention” Program - Naïve Design

Decoupling

Observation:

Timer needs to call the display method

BUT Timer does NOT need to know what the display does

•To decouple Timer and Reminder specify their relation via

•Timer will work with any class (including Reminder) if this class
meets the TimerTask specification

interface TimerTask {

void run();

}

“Pay Attention” Program - Improved Design
public class Reminder implements TimerTask {

public void run() { display();}

private void display() {

System.out.println(“Please Pay Attention to the Lecture!");

}

}

public class Timer {

private TimerTask curTask;

public Timer(TimerTask newTask) {

curTask = newTask;

}

public void start() {

while (true) {

...

if (enoughTimeHasPassed) {

curTask.run();

}

}

In Main :

…

Timer timer = new Timer(new Reminder());

timer.run;

Let’s compare both designs

Reminder

Timer

Main

Reminder

Timer

Main

TimerTask

Implements

Depends on
Naïve Design: Improved Design:

We achieved:
• Timer depends on TimerTask, NOT on Reminder
Unaffected by implementation details of Reminder
Timer can be reused
• Main depends on the constructor of Reminder

and still depends on Timer (is this necessary?)

Alternative - using Callback Design Pattern
In real life, when you set reminder in your smartphone/calendar, will
time depend on the reminder or reminder on the time?

We need to invert a dependency, such that Reminder depends
on Timer (not vice versa)

[Less obvious coding style, but more “natural” dependency]

How?

CALLBACK: A method call from a module to a client, to notify it about
some condition

Reminder creates a Timer, and passes in a reference to itself so the
Timer can call it back 

•We have achieved our goal: Main does not depend on Timer

Callbacks
“Code” provided by a client to be used by a library

Synchronous Callbacks:

• Useful when library needs the callback result immediately, in a
sequential order

• For examples: HashMap/HashSet calls its client’s hashCode(),
equals()

Asynchronous Callbacks:

• Useful when the callback should be performed later, upon
occurrence of a relevant event

• Examples: GUI listeners

“Pay Attention” Program - Improved Design
public class Reminder implements TimerTask {

public void run() { display();}

private void display() {

System.out.println(“Please Pay Attention to the Lecture!");

}

}

public class Timer {

private TimerTask curTask;

public Timer(TimerTask newTask) {

curTask = newTask;

}

public void start() {

while (true) {

...

if (enoughTimeHasPassed) {

curTask.run();

}

}

In Main :

…

Timer timer = new Timer(new Reminder());

timer.run();

“Pay Attention” Program – using Callback
public class Reminder implements TimerTask {

Timer timer;

public Reminder () {

timer = new Timer(this);

}

public void setOn() {

timer.start();

}

public void run() { display();}

private void display() {

System.out.println(“Please Pay Attention to the Lecture!");

}

}

Ask timer to call
this Reminder back

Callback entry point

In Main :

…

Reminder reminder = new Reminder();

reminder.setOn();

Let’s compare ALL designs

Reminder

Timer

Main

Reminder

Timer

Main

TimerTask

Implements

Depends on
Naïve Design: Improved Design:

Reminder

Timer

Main

TimerTask

CALLBACK Design:

Main does not depend on Timer
Reminder depends on Timer

Pay attention…

Decoupling and Design:

•While you design (before you code), examine dependencies
Do NOT introduce unnecessary coupling

•Coupling is easy if you code first
•If a method needs information from another object
 get it in a modular way
•Unnecessary coupling (e.g., Timer depends on Reminder) will:
▪ Damage the code’s modularity and reusability
▪ Yield a more complex code, which is harder to understand

Coupling From Worst to Best
•Coupling - the degree to which a class

interacts with or depends on other classes

•Content coupling (worst) - one class depends on
internal data or behavior of another.

•Common coupling - sharing common data

 globals /static final are evil.

•Control coupling - knowledge about the
implementation of others and passing information to
control that logic.

•Stamp coupling - sharing more data than needed

•Data coupling (usually, cannot avoid) - Passing classes
as parameter to method calls (loose coupling)

Content Coupling Example:
one class depends on internal data or behavior of another.

public class Line {

private Point start, end;

...

public Point getStart() { return start; }

public Point getEnd(){ return end; }

}

public class Arch {

private Line baseline;

...

void slant(int newY) {

Point theEnd = baseline.getEnd();

theEnd.setLocation(theEnd.getX(),newY);

}

}

Arch modifies
internal data of
Line (Point
instances) through
Point Interface 
Arch is content
coupled to Line

public class Line {

private Point start, end;

...

public Point getStart() { return start; }

public Point getEnd(){ return end; }

}

public class Arch {

private Line baseline;

...

void slant(int newY) {

Point theEnd = baseline.getEnd();

theEnd.setLocation(theEnd.getX(),newY);

}

}

Content Coupling Example:
one class depends on internal data or behavior of another.

Arch is content coupled to Line - it bypasses the interface of Line
and uses the interface of Point instead.
How is that problematic?
If Line changes the way it stores data, or adds additional code to
handle point updates  the Arch class must be updated as well

Advantages of reducing connectivity
(coupling)

•Independent development - decisions made locally, do not
interfere with correctness of other modules.

•Correctness - proofs easier to derive

•Potential reusability increased.

•Reduction in maintenance costs

•Less likely changes will propagate to other modules

•More robust to errors

•Comprehensibility (can understand module independent of
environment in which used).

Model-View-Controller Pattern
WHAT?

Division of responsibilities - separating the view layer of your
application from the data/logic

WHY?

•Separation of design concerns

•More easily maintainable and extendable

•Promotes division of labor

Model-View-Controller pattern

•Originated in the Smalltalk community in 1970’s

•Widely used in commercial programming

•Recommended practice for graphical applications

•Used throughout Swing (though not obvious on the surface)

MVC Overview

Model

•Contains the “truth” – data/object or state of the system

View

•Visualizes the information in the model to users in desired formats:

Graphical display, dancing bar graphs, printed output, network
stream….

• Allows for multiple views of a single model

Controller

•Acts on both model and view

• In GUIs, reacts to user input (mouse, keyboard) and other events

•Sends messages to the Model based on events

MVC Overview

MVC Interactions and Roles (1)
Model

•Encapsulates the data in some internal representation

•Maintains a list of interested viewers

•Notifies viewers when model has changed and view update
might be needed

•Supplies data to viewers when requested

•Generally should not know details of the display or user interface
details

MVC Interactions and Roles (2)

•View

•Maintains details about the display environment

•Gets data from the model when it needs to

•Renders data when requested (by the model or the controller)

•May catch user interface events and notify controller

•Controller

•Intercepts and interprets user
interface events

•Routes information to
model and views

MVC vs MV

•Separating Model from View  basic good object-oriented design

•Separating the Controller is a bit less clear-cut

•Maybe overkill in a small system

•Often the Controller and the View are naturally closely related

Both frequently use GUI Components (unlikely for Model)

•Model-View pattern

•OK to fold the Controller and the View together when it makes sense

•Fairly common in modern user interface packages

Implementation Note
•Model, View, and Controller are design concepts, not class names

Might be more than one class involved in each

•Can have multiple views and controllers, BUT only 1 model !

•Models/ views are possibly reusable. Controller is NOT reusable

Moreover…

•What if the view itself has significant state and behavior?

•How do you manage that or test it?

•Ordinary MVC does not have an answer for that, because the
view logic is locked away.

•Other patterns - MVP and MVVM are specific adaptations to
MVC to address this concern.

The Observer Pattern
•The MVC design is a particular

instance of “Observer” Pattern:

•Object that might change – observable,
keeps a list of interested observers
and notifies them when something happens

•Observers can react however they like

•Is used in many areas :

1. Event and listeners for the JButton clicks.

2. Java RMI (Remote Method Invocation).

•Support in the Java library: interface java.util.Observer
and class java.util.Observable

If these are a good fit for you  use them
Otherwise  write your own

https://docs.oracle.com/javase/7/docs/api/java/util/Observer.html
https://docs.oracle.com/javase/7/docs/api/java/util/Observable.html

Observable – monitoring of

stock prices (has a state that

holds the stock prices)

Observers – waiting for the

notifications about the

changed stock prices to

display the prices on

the relevant view

The Observer Pattern

Observers

Observable

class StockUpdate {

private PriceInfo priceInfo;

private List<PriceObserver> observers;

… // constructor comes here

void addObserver(PriceObserver newObs) {

observers.add(newObs);

}

void stockPricesChanged(PriceInfo newPriceInfo) {

this.priceInfo= newPriceInfo;

notifyObservers();

}

void notifyObservers(){

for (PriceObserver obs : observers)

obs.update(priceInfo);

} … }

Observer pattern weakens the coupling
What should StockUpdate class know about viewers?

 Observer pattern: call an update() method with changed data

Do the callbacks

Register a callback to
a new observer

interface PriceObserver {

void update(PriceInfo priceInfo);

}

Any View that is interested to display
stock prices must implement this

• Encapsulates state
• Maintains list of observers

•StockUpdate is not responsible for viewer creation
•Main passes viewers to StockUpdate as observers
•StockUpdate keeps list of PriceObservers, notifies them of

changes via callback

•Issue: update()must pass specific information to (unknown)
viewers (that otherwise have NO idea about stock prices)

Create StockUpdate
and add observers

The observer pattern

StockUpdate

WebDisplay

StockBoardDisplay

Main

MobileDisplay

PriceObserver

Create viewers/get observers

•Observer pattern implements push models
•Pull model: give all viewers access to StockUpdate
They can extract whatever data they need
More flexibility☺

•Issue: more coupling 
•Can code both models together

Create StockUpdate
and add observers

Note on “Push” vs. “Pull”

StockUpdate

WebDisplay

StockBoardDisplay

Main

MobileDisplay

PriceObserver

Create viewers/get observers

Idea: eliminate needless notifications if
there is no interesting change to the

Observable.
Cons: Forced in all situations

// Represents a Course object monitored by ElectronicRoster

public class Course extends Observable {

private int courseID;

private String title

private List<Student> students = new ArrayList<>();

… //constructor comes here

public void addStudent(Student student) {

students.add(student);

setChanged();

notifyObservers();

}

public int size() {

return students.size();

}

… //getters come here

}

Using JDK Observer

Part of the JDK:
Cons: Class WITHOUT interface

Course inherits many methods including:
void addObserver(Observer o)
protected void setChanged()
void notifyObservers()

Using JDK Observer

public class ElectronicRoster implements Observer {

// called whenever observed object changes

// and observers are notified

public void update(Observable o, Object arg) {

if (o instanceof Course){

System.out.println(“Course” +

((Course)o).getTitle() + “count: "

+ ((Course)o).size());

}

}

}

Part of the JDK

Any additional
info

Cons: casting  because
Observable is not generic

Registering an observer
Somewhere in Main:

Course course= new Course();

course.addStudent(student1);

// nothing visible happens

course.addObserver(new ElectronicRoaster());

course.addStudent(student2);

// now text appears: "Signup count: 2"

At home:
Create you own Observer interface and two observers:
1. View of a new student name that was added to the course
2. View of the total number of students currently enrolled
Note - in this case no need to extend Observable
Practice - anonymous classes and lambda expression (AFTER next class)

Back to Cohesion - God classes

god class: a class that hoards much of the data or functionality of
a system

– Poor cohesion – little thought about why all the elements are
placed together

– Illusion of coupling reduction - only by collapsing multiple
not necessarily related modules into one

A god class is an example of an anti-pattern: a known bad way of
doing things

Maximizing Cohesion

Methods should do ONE thing well:

– Compute a value but let client decide what to do with it

– Observe or mutate, do NOT do both

– Do NOT print as a side effect of debugging and such

Do NOT limit reusability of the method by having it perform
multiple, not-necessarily-related things

“Flag” variables are often a symptom of poor method cohesion
 Avoid methods that take lots of Boolean “flag” parameters

Method design
Effective Java (EJ) Tip #40: Design method signatures carefully

– Avoid long parameter lists

– “If you have a method with ten parameters, you probably
missed some.”

– Especially error-prone if parameters are all the same type

Which of these has a bug?

– memset(ptr, size, 0);

– memset(ptr, 0, size);

EJ Tip #41: Use overloading judiciously

Can be useful, BUT avoid overloading with same number of
parameters, and only if methods are really related

Field design

A variable should be made into a field if and only if:

– It is part of the inherent internal state of the object

– It has a value that retains meaning throughout the object's life

– Its state must persist past the end of any one public method

All other variables can and should be local to the methods in which
they are used

– Fields should not be used to avoid parameter passing

– NOT every constructor parameter needs to be a field

There are a few exception to the rule:

– Example: Thread.run

Constructor design

Constructors should have all the arguments necessary to initialize the
object's state – no more, no less

Object should be completely initialized after constructor is done

Client should NOT need to call other methods to “finish” initialization

Constructors CAN be private/protected

Enums and Abstraction

• Consider use of enums, even with only two values – which of
the following is better?

oven.setTemp(97, true);

oven.setTemp(97, Temperature.CELSIUS);

• Consider creating a Type for complex data or data that
can change representation. For example:

• Urgency (Assignment 2), could be rated using
numbers/ letters/words  encapsulate this within a
class

Enum is actually a class  check it out!

But it is LESS flexible. For example: compareTo() is final
(cannot be overridden)

Class design ideals

Beyond cohesion and coupling…

Completeness: Every (major) class should present a complete
interface (self-contained)

Consistency: In names, param/returns, ordering, behavior and
exception declaration
• If you have variables that capture time  use the same type
• If you declare runtime exception with throw in the

signature  do it always
• Are not these confusing?

String.length(), array.length, collection.size()

Completeness
Include important methods to make a class easy to use

Counter examples:

• A mutable collection with add but no remove

• A tool object with a setOn method to select it, but no
setOff method to deselect it

• Date class with no date-arithmetic operations

Also:
– Objects that have a natural ordering should implement
Comparable

– Objects created by you should override equals (and
therefore hashCode)

– Most objects should override toString (VERY useful in
debugging and IntelliJ)

But…

Do NOT include everything you can possibly think of

– Once included, it stays there forever (even if almost nobody
ever uses it)

Do NOT overcomplicate

– You can always add it later if you really need it

“Everything should be made as simple as
possible, but not simpler.”

- Einstein

Open-Closed Principle

Software entities should be:
• Open for extension
But
• Closed for Modification
To add NEW features to your system:

• Add new classes or reuse existing ones in new ways
• If possible, do NOT make changes by modifying existing

ones. Why?
• Existing code works and changing it can introduce

bugs and errors.
And once more: Code to interfaces, not to classes

Example:

accept a List parameter, not ArrayList or LinkedList

EJ Tip #52: Refer to objects by their interfaces

Documenting a class
From EJ:
• The doc comment should include all of the method's

preconditions (things that have to be true before method
invocation), and its postconditions

• Typically, preconditions are described implicitly by the
@throws tags for unchecked exceptions; each unchecked
exception corresponds to a precondition violation.

• Also, preconditions can be specified along with the
affected parameters in their @param tags.

• Postcondition checks are best implemented via assertions,
whether or not they are specified in public methods.

For example:
/*@param index index of element to return; must be non-

*negative and less than the size of this list

*@throws IndexOutOfBoundsException if the index is out

of range({@code index < 0 || index >= this.size()})/

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/javadoc.html#wheretags

http://ljhs.sandi.net/faculty/Volger/JavaNotes/7.5-PrePostConditions.pdf

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/javadoc.html#wheretags
http://ljhs.sandi.net/faculty/Volger/JavaNotes/7.5-PrePostConditions.pdf

The role of documentation
From Kernighan and Plauger

• If a program is incorrect,
it matters little what the docs say

• If documentation does not agree
with the code, it is not worth much

Code must largely document itself.

 If not, rewrite the code rather than increasing the documentation
of the existing complex code.

• Good code needs fewer comments than bad code.

• Comments should provide additional information from the code
itself. They should not echo the code.

• Meaningful variable names and labels, a layout that shows
logical structure, help make a program “self- documenting”

Follow MVC Design Patterns

• User interaction should be done through controller/view
classes/modules and NOT through classes that maintain the key
system data

 Do NOT put print statements in your core classes

• Instead, return data that can be displayed by the view modules

Which of the following is better?
public void printMyself();

public String toString()

Use Other Design Patterns

Next week….

