
CS 5010: Program Design Principles Fall 2017

© Northeastern University 1

CS 5010: PDP
Lecture 11: Networks
CS 5010
Fall 2017
Seattle

Adrienne Slaughter, Ph.D.
ahslaughter@northeastern.edu

CS 5010: Program Design Principles Fall 2017

© Northeastern University 2

Agenda
• Networking

CS 5010: Program Design Principles Fall 2017

© Northeastern University 3

INTRODUCTION

CS 5010: Program Design Principles Fall 2017

© Northeastern University 4

Goal: Communicate data between applications

Server Client

CS 5010: Program Design Principles Fall 2017

© Northeastern University 5

Goal: Communicate data between applications

“Door is closed,
that’s why I
knocked!!”

Server Client

“Knock
Knock”

“Doris.”

“Who’s there?”

“Doris who? “

CS 5010: Program Design Principles Fall 2017

© Northeastern University 6

Goal: Communicate data between applications

“Door is closed,
that’s why I
knocked!!”

Server Client

“Knock
Knock”

“Doris.”

“Who’s there?”

“Doris who? “

The knock-knock joke is a protocol:
we agree on the order of requests

and how we ask for things.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 7

Goal: Communicate data between applications

“Door is closed,
that’s why I
knocked!!”

Server Client

“Knock
Knock”

“Doris.”

“Who’s there?”

“Doris who? “

What would happen if we did this
instead?

CS 5010: Program Design Principles Fall 2017

© Northeastern University 8

Goal: Communicate data between applications

“…”

Server Client

“Knock
Knock”

“Doris”

“What?”

“Doris is on
vacation this

week”

CS 5010: Program Design Principles Fall 2017

© Northeastern University 9

Goal: Communicate data between applications

“Door is closed,
that’s why I
knocked!!”

Server Client

“Knock
Knock”

“Doris.”

“Who’s there?”

“Doris who? “

One computer broke the protocol, so
the other one didn’t know how to

respond.

Or, at least, it didn’t make sense…

CS 5010: Program Design Principles Fall 2017

© Northeastern University 10

Consider the web:

WebServer Client: Web Browser

CS 5010: Program Design Principles Fall 2017

© Northeastern University 11

Consider the web:

Client sends URL to
host/server, specifying

which document:
the request

WebServer Client: Web Browser“Give me the red one”

CS 5010: Program Design Principles Fall 2017

© Northeastern University 12

Consider the web:

Host sends file back to
client, which is displayed

in browser:
The response

WebServer Client: Web Browser

CS 5010: Program Design Principles Fall 2017

© Northeastern University 13

Consider the web:

This works because the
server and client agree to

use the same protocol:
HTTP

WebServer Client: Web Browser

CS 5010: Program Design Principles Fall 2017

© Northeastern University 14

HTTP
• HyperText Transfer Protocol
• Consists of 2 basic messages:

– Request
– Response

• Each of the request/response consists of headers

CS 5010: Program Design Principles Fall 2017

© Northeastern University 15

But how does the data get transferred?

Application Data

WebServer Client: Web Browser

All that HTTP stuff is
just Application Data–
data that 2 applications

(the web server and web
browser) use to
communicate.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 16

But how does the data get transferred?

Application Data

WebServer Client: Web Browser

How do we actually
connect to machines and

transfer data?

CS 5010: Program Design Principles Fall 2017

© Northeastern University 17

But how does the data get transferred?

Application Data

WebServer Client: Web Browser

First, we open a socket
on each machine

CS 5010: Program Design Principles Fall 2017

© Northeastern University 18

But how does the data get transferred?

Application Data

WebServer Client: Web Browser

The apps will use the
socket to communicate

with the other
machine/application.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 19

But how does the data get transferred?

Application Data

WebServer Client: Web Browser

The apps will use the
socket to communicate

with the other
machine/application.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 20

But how does the data get transferred?

WebServer Client: Web Browser

The application data gets a
TCP header added to it…

TCP
header Application Data

CS 5010: Program Design Principles Fall 2017

© Northeastern University 21

But how does the data get transferred?

WebServer Client: Web Browser

.. and an IP header …

TCP
header Application DataIP

header

CS 5010: Program Design Principles Fall 2017

© Northeastern University 22

But how does the data get transferred?

WebServer Client: Web Browser

TCP
header Application DataIP

header

…wrapped with frame
header/footer…

CS 5010: Program Design Principles Fall 2017

© Northeastern University 23

But how does the data get transferred?

WebServer Client: Web Browser

TCP
header Application DataIP

header

…and passed across the
wire.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 24

What pieces do we need to worry about?

• Naming of network resources
– How to specify which computer you want to connect to

• Sockets
– How to allow your computer to talk directly to another computer

• Communication protocols
– Agreeing on the communication

• HTTP connections
– Because the web.

• JSON
– Also, the web.

i.e., lecture objectives

CS 5010: Program Design Principles Fall 2017

© Northeastern University 25

DOING THIS IN JAVA

CS 5010: Program Design Principles Fall 2017

© Northeastern University 26

Networking Concepts/Issues/Goals
• Naming: How to find the computer/host you

want to connect to
• Transfer: The actual connection
• Communicating: Sending data back and forth in

a way that both the client and host/server
understand

CS 5010: Program Design Principles Fall 2017

© Northeastern University 27

The General Process
• Open a socket.
• Open an input stream and output stream to

the socket.
• Read from and write to the stream

according to the server's protocol.
• Close the streams.
• Close the socket.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 28

The General Process
• Open a socket.
• Open an input stream and output stream to

the socket.
• Read from and write to the stream

according to the server's protocol.
• Close the streams.
• Close the socket.

Naming
Transfer

Communicating

CS 5010: Program Design Principles Fall 2017

© Northeastern University 29

Relevant Terminology
• Client
• Server
• Socket: abstraction through which an application

may send and receive data
• Port
• DNS
• TCP/IP
• Session

CS 5010: Program Design Principles Fall 2017

© Northeastern University 30

Relevant Terminology
• Client
• Server
• Socket: abstraction through which an application

may send and receive data
• Port
• DNS
• TCP/IP
• Session

} We know these from our
introduction example.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 31

We know the first few terms from our introductory
example.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 32

More definitions
• DNS: Domain Name System. Translates

“http://www.northeastern.edu” into the “Internet Address”.
– It’s the difference between going to “Ian’s House”, and the actual street

address. When you ask DNS for the address to Ian’s House, it’s gives you
the street address.

• TCP/IP: Transfer Control Protocol and Internet Protocol.
– Used to break the application data into small pieces to be sent across the

wire between the client and server. See the end of this lecture for more
details.

• Session: A “conversation” between two computers.
– Consider calling someone on the phone. When you call, you initiate the

session. You and the person on the other end take turns talking, or
exchanging dialog. When the two of you are done talking, you hang up, or
close the session.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 33

Naming

CS 5010: Program Design Principles Fall 2017

© Northeastern University 34

URL, URI
• URI: Uniform Resource Identifier
• URL: Uniform Resource Locator
• Often used interchangeably, but there is a difference:

– URL is very specific: includes item (e.g. a specific file name)
and protocol (how to get the item).

• Example: http://www.northeastern.edu/index.html

– URI can be less specific:
• Example: northeastern.edu
• Doesn’t specify access (e.g., ftp? http?) or specific page (index.html).

CS 5010: Program Design Principles Fall 2017

© Northeastern University 35

Anatomy of a URL

http://www.theimdbapi.org/api/movie?movie_id=tt0089218

Protocol Resource name Path Parameters

CS 5010: Program Design Principles Fall 2017

© Northeastern University 36

Anatomy of a URL

http://www.theimdbapi.org/api/movie?movie_id=tt0089218

Protocol Resource Name Path Parameters

Without protocol & resource name, we can’t
have a URL. Path and parameters can be null.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 37

Anatomy of a URL

http://www.theimdbapi.org/api/movie?movie_id=tt0089218

Protocol Resource Name:
• Hostname
• Filename
• Port Number
• Reference (optional)

Path Parameters

CS 5010: Program Design Principles Fall 2017

© Northeastern University 38

Anatomy of a URL

http://www.theimdbapi.org/api/movie?movie_id=tt0089218

Protocol Resource Name:
• Hostname
• Filename
• Port Number
• Reference (optional)

Path Parameters
All of this information allows a socket to be
opened up.

But connecting only via URLs is pretty high
level– a lot of abstraction is happening.

What if we want to define our own protocol?
We need to open a socket directly.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 39

Java Classes
• java.net.URL
• java.net.URI
• java.net.Socket

CS 5010: Program Design Principles Fall 2017

© Northeastern University 40

private static void tryUrl(){
try {

// Create URL
URL myURL = new URL("northeastern.edu");
System.out.println("The URL is " + myURL);

}
catch (MalformedURLException e) {

// new URL() failed
e.printStackTrace();

}
}

private static void tryUri(){
try {

// Create URI
URI myURI = new URI("northeastern.edu");
System.out.println("The URI is " + myURI);

} catch (URISyntaxException e) {
e.printStackTrace();

}
}

CS 5010: Program Design Principles Fall 2017

© Northeastern University 41

private static void tryUrl(){
try {

// Create URL
URL myURL = new URL("northeastern.edu");
System.out.println("The URL is " + myURL);

}
catch (MalformedURLException e) {

// new URL() failed
e.printStackTrace();

}
}

private static void tryUri(){
try {

// Create URI
URI myURI = new URI("northeastern.edu");
System.out.println("The URI is " + myURI);

} catch (URISyntaxException e) {
e.printStackTrace();

}
}

Which one throws an
exception?

CS 5010: Program Design Principles Fall 2017

© Northeastern University 42

private static void tryUrl(){
try {

// Create URL
URL myURL = new URL("northeastern.edu");
System.out.println("The URL is " + myURL);

}
catch (MalformedURLException e) {

// new URL() failed
e.printStackTrace();

}
}

private static void tryUri(){
try {

// Create URI
URI myURI = new URI("northeastern.edu");
System.out.println("The URI is " + myURI);

} catch (URISyntaxException e) {
e.printStackTrace();

}
}

tryURL() fails, because the string
“northeastern.edu” doesn’t tell us
enough about the protocol or file
that we’re interested in.

Replacing the string with
“http://northeastern.edu” will make
it work.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 43

Some popular protocols
• HTTP: Hypertext Transfer Protocol
• FTP: File Transfer Protocol
• SMTP: Simple Mail Transfer Protocol

CS 5010: Program Design Principles Fall 2017

© Northeastern University 44

try (
Socket socket = new Socket(hostName, portNumber);

) {
// App code goes here:
// Read from socket, write to socket. (more details soon)
socket.close();

} catch (UnknownHostException e) {
System.err.println("Don't know about host " + hostName);
System.exit(1);

}

To go lower-level, open a Socket
with a hostname and a
portNumber.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 45

Summary of Naming
• We have to have a way of specifying which

computer we want to connect to
• In Java, we do this with URIs, URLs, and for

lower-level client/server programming, sockets
• A socket requires a hostname and a port
• A URL requires a protocol and a resource name

CS 5010: Program Design Principles Fall 2017

© Northeastern University 46

Transfer

CS 5010: Program Design Principles Fall 2017

© Northeastern University 47

Once we have a name for the host we want to
connect to, we need to open a connection

and start the data transfer.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 48

Relevant Java Classes
• For naming:

– java.net.URL
– java.net.URI

• For connecting:
– java.net.URLConnection, java.net.HttpUrlConnection
– java.net.Socket

• For actual transfer:
– java.io.InputStreamReader
– java.io.BufferedReader
– java.io.PrintWriter

CS 5010: Program Design Principles Fall 2017

© Northeastern University 49

Three Examples
1. Reading data from a URL directly
2. Connect to a URL, and initiate a session for

input/output
3. Create a socket and connect to it directly

CS 5010: Program Design Principles Fall 2017

© Northeastern University 50

Example 1:
Read directly from URL

CS 5010: Program Design Principles Fall 2017

© Northeastern University 51

private static void readUrl(){
try {

// Create URL
URL myURL = new URL("http://www.northeastern.edu");

BufferedReader in = new BufferedReader(
new InputStreamReader(myURL.openStream()));

String inputLine;
while ((inputLine = in.readLine()) != null)

System.out.println(inputLine);

in.close();
}
catch (MalformedURLException e) {

// new URL() failed
// ...

}
catch (IOException e) {

// openConnection() failed
// ...
e.printStackTrace();

}

}

CS 5010: Program Design Principles Fall 2017

© Northeastern University 52

private static void readUrl(){
try {

// Create URL
URL myURL = new URL("http://www.northeastern.edu");

BufferedReader in = new BufferedReader(
new InputStreamReader(myURL.openStream()));

String inputLine;
while ((inputLine = in.readLine()) != null)

System.out.println(inputLine);

in.close();
}
catch (MalformedURLException e) {

// new URL() failed
// ...

}
catch (IOException e) {

// openConnection() failed
// ...
e.printStackTrace();

}

}

Open a stream from
the defined URL

CS 5010: Program Design Principles Fall 2017

© Northeastern University 53

private static void readUrl(){
try {

// Create URL
URL myURL = new URL("http://www.northeastern.edu");

BufferedReader in = new BufferedReader(
new InputStreamReader(myURL.openStream()));

String inputLine;
while ((inputLine = in.readLine()) != null)

System.out.println(inputLine);

in.close();
}
catch (MalformedURLException e) {

// new URL() failed
// ...

}
catch (IOException e) {

// openConnection() failed
// ...
e.printStackTrace();

}

}

Pass it into an
InputStreamReader to
handle the input.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 54

private static void readUrl(){
try {

// Create URL
URL myURL = new URL("http://www.northeastern.edu");

BufferedReader in = new BufferedReader(
new InputStreamReader(myURL.openStream()));

String inputLine;
while ((inputLine = in.readLine()) != null)

System.out.println(inputLine);

in.close();
}
catch (MalformedURLException e) {

// new URL() failed
// ...

}
catch (IOException e) {

// openConnection() failed
// ...
e.printStackTrace();

}

}

Pass that into a
BufferedReader to
make it easy for you to
handle the input.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 55

private static void readUrl(){
try {

// Create URL
URL myURL = new URL("http://www.northeastern.edu");

BufferedReader in = new BufferedReader(
new InputStreamReader(myURL.openStream()));

String inputLine;
while ((inputLine = in.readLine()) != null)

System.out.println(inputLine);

in.close();
}
catch (MalformedURLException e) {

// new URL() failed
// ...

}
catch (IOException e) {

// openConnection() failed
// ...
e.printStackTrace();

}

}

While there is still text
coming in from the
stream connection, get it,
and print to console.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 56

private static void readUrl(){
try {

// Create URL
URL myURL = new URL("http://www.northeastern.edu");

BufferedReader in = new BufferedReader(
new InputStreamReader(myURL.openStream()));

String inputLine;
while ((inputLine = in.readLine()) != null)

System.out.println(inputLine);

in.close();
}
catch (MalformedURLException e) {

// new URL() failed
// ...

}
catch (IOException e) {

// openConnection() failed
// ...
e.printStackTrace();

}

}

Don’t forget to close your
connection!!

CS 5010: Program Design Principles Fall 2017

© Northeastern University 57

Example 1 summary
• Simple, easy way to get data from a URL
• This example was a web page, but could just as

easily be a REST endpoint that contains data
• Transfer was only one way: could only read
• Limited: Some web servers require specific HTTP

headers/values, and you can’t modify the
parameters here.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 58

Example 2:
Connect to URL for

input/output

CS 5010: Program Design Principles Fall 2017

© Northeastern University 59

private static void openHttpConnection(){
try {

// Create URL
String theURL = "http://www.theimdbapi.org/api/movie?movie_id=tt0089218";
URL myURL = new URL(theURL);

// Connect to URL
HttpURLConnection connection = (HttpURLConnection) myURL.openConnection();
connection.setRequestMethod("GET");
connection.setRequestProperty("User-Agent", "App/java app demo");
connection.setRequestProperty("Content-Type", "application/json");

connection.connect();

// Read from/Write to the connection
BufferedReader in = new BufferedReader(new InputStreamReader(

connection.getInputStream()));
String inputLine;
while ((inputLine = in.readLine()) != null) {

System.out.println(inputLine);
}
in.close();

}
// Handle exceptions (omitted for clarity)

}

Rather than just calling
“openStream()” on the URL,
call openConnection() to
create a connection object
that we can set parameters
on before calling.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 60

private static void openHttpConnection(){
try {

// Create URL
String theURL = "http://www.theimdbapi.org/api/movie?movie_id=tt0089218";
URL myURL = new URL(theURL);

// Connect to URL
HttpURLConnection connection = (HttpURLConnection) myURL.openConnection();
connection.setRequestMethod("GET");
connection.setRequestProperty("User-Agent", "App/java app demo");
connection.setRequestProperty("Content-Type", "application/json");

connection.connect();

// Read from/Write to the connection
BufferedReader in = new BufferedReader(new InputStreamReader(

connection.getInputStream()));
String inputLine;
while ((inputLine = in.readLine()) != null) {

System.out.println(inputLine);
}
in.close();

}
// Handle exceptions (omitted for clarity)

}

Now, set some parameters:
• requestMethod specifies a GET rather than a POST.
• This particular server requires a User-Agent.
• Content-type just says I expect json in return.
• These are all details that are not always relevant, and

change from application to application.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 61

private static void openHttpConnection(){
try {

// Create URL
String theURL = "http://www.theimdbapi.org/api/movie?movie_id=tt0089218";
URL myURL = new URL(theURL);

// Connect to URL
HttpURLConnection connection = (HttpURLConnection) myURL.openConnection();
connection.setRequestMethod("GET");
connection.setRequestProperty("User-Agent", "App/java app demo");
connection.setRequestProperty("Content-Type", "application/json");

connection.connect();

// Read from/Write to the connection
BufferedReader in = new BufferedReader(new InputStreamReader(

connection.getInputStream()));
String inputLine;
while ((inputLine = in.readLine()) != null) {

System.out.println(inputLine);
}
in.close();

}
// Handle exceptions (omitted for clarity)

}

Connect!

This actually opens the connection
with the given parameters.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 62

private static void openHttpConnection(){
try {

// Create URL
String theURL = "http://www.theimdbapi.org/api/movie?movie_id=tt0089218";
URL myURL = new URL(theURL);

// Connect to URL
HttpURLConnection connection = (HttpURLConnection) myURL.openConnection();
connection.setRequestMethod("GET");
connection.setRequestProperty("User-Agent", "App/java app demo");
connection.setRequestProperty("Content-Type", "application/json");

connection.connect();

// Read from/Write to the connection
BufferedReader in = new BufferedReader(new InputStreamReader(

connection.getInputStream()));
String inputLine;
while ((inputLine = in.readLine()) != null) {

System.out.println(inputLine);
}
in.close();

}
// Handle exceptions (omitted for clarity)

}

But now, just do the same thing we
did last time:
Create an inputStreamReader, wrap
it in a BufferedReader, and dump
the response to the console.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 63

private static void openHttpConnection(){
try {

// Create URL
String theURL = "http://www.theimdbapi.org/api/movie?movie_id=tt0089218";
URL myURL = new URL(theURL);

// Connect to URL
HttpURLConnection connection = (HttpURLConnection) myURL.openConnection();
connection.setRequestMethod("GET");
connection.setRequestProperty("User-Agent", "App/java app demo");
connection.setRequestProperty("Content-Type", "application/json");

connection.connect();

// Read from/Write to the connection
BufferedReader in = new BufferedReader(new InputStreamReader(

connection.getInputStream()));
String inputLine;
while ((inputLine = in.readLine()) != null) {

System.out.println(inputLine);
}
in.close();

}
// Handle exceptions (omitted for clarity)

}

Don’t forget to close!!

CS 5010: Program Design Principles Fall 2017

© Northeastern University 64

Example 2 summary
• Fairly easy way to connect to a URL
• Gives more control over the connection:

– Can set parameters, header info
• We didn’t use this, but we can use the connection

to do output as well
• Still constrained to using a pre-specified protocol

(HTTP, FTP, …)

CS 5010: Program Design Principles Fall 2017

© Northeastern University 65

Example 3:
Connect to Socket

Adapted from: https://docs.oracle.com/javase/tutorial/networking/sockets/clientServer.html

CS 5010: Program Design Principles Fall 2017

© Northeastern University 66

In this example, we’re looking at an
implementation of the Knock-Knock

client-server we saw earlier.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 67

Knock-Knock Demo Components
• KnockKnockServer:

– Listens for clients.
– Parses client input
– Sends a response

• KnockKnockClient:
– Takes in user input
– Sends it to the server
– Displays server response to the user

• KnockKnockProtocol: (We’ll talk about this in the next section)
– Determines appropriate output for given input

CS 5010: Program Design Principles Fall 2017

© Northeastern University 68

First the client…
(It’s pretty similar to what we’ve seen before)

CS 5010: Program Design Principles Fall 2017

© Northeastern University 69

try (
Socket kkSocket = new Socket(hostName, portNumber);
PrintWriter out = new PrintWriter(kkSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(kkSocket.getInputStream()));
) {

BufferedReader stdIn =
new BufferedReader(new InputStreamReader(System.in));

String fromServer;
String fromUser;

while ((fromServer = in.readLine()) != null) {
System.out.println("Server: " + fromServer);
if (fromServer.equals("Bye."))

break;

fromUser = stdIn.readLine();
if (fromUser != null) {

System.out.println("Client: " + fromUser);
out.println(fromUser);

}
}
kkSocket.close();

} catch (Exceptions)//Handle exceptions properly here. Omitted for clarity.

KnockKnockClient.java

This time, start by opening a socket,
giving a hostname and a
portnumber.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 70

try (
Socket kkSocket = new Socket(hostName, portNumber);
PrintWriter out = new PrintWriter(kkSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(kkSocket.getInputStream()));
) {

BufferedReader stdIn =
new BufferedReader(new InputStreamReader(System.in));

String fromServer;
String fromUser;

while ((fromServer = in.readLine()) != null) {
System.out.println("Server: " + fromServer);
if (fromServer.equals("Bye."))

break;

fromUser = stdIn.readLine();
if (fromUser != null) {

System.out.println("Client: " + fromUser);
out.println(fromUser);

}
}
kkSocket.close();

} catch (Exceptions)//Handle exceptions properly here. Omitted for clarity.

KnockKnockClient.java

In addition to reading from the
server, we need to write to the
server.
Do this by creating a PrintWriter.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 71

try (
Socket kkSocket = new Socket(hostName, portNumber);
PrintWriter out = new PrintWriter(kkSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(kkSocket.getInputStream()));
) {

BufferedReader stdIn =
new BufferedReader(new InputStreamReader(System.in));

String fromServer;
String fromUser;

while ((fromServer = in.readLine()) != null) {
System.out.println("Server: " + fromServer);
if (fromServer.equals("Bye."))

break;

fromUser = stdIn.readLine();
if (fromUser != null) {

System.out.println("Client: " + fromUser);
out.println(fromUser);

}
}
kkSocket.close();

} catch (Exceptions)//Handle exceptions properly here. Omitted for clarity.

KnockKnockClient.java

But since we also need to read from
the server, also create the
BufferedReader from an
InputStreamReader.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 72

try (
Socket kkSocket = new Socket(hostName, portNumber);
PrintWriter out = new PrintWriter(kkSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(kkSocket.getInputStream()));
) {

BufferedReader stdIn =
new BufferedReader(new InputStreamReader(System.in));

String fromServer;
String fromUser;

while ((fromServer = in.readLine()) != null) {
System.out.println("Server: " + fromServer);
if (fromServer.equals("Bye."))

break;

fromUser = stdIn.readLine();
if (fromUser != null) {

System.out.println("Client: " + fromUser);
out.println(fromUser);

}
}
kkSocket.close();

} catch (Exceptions)//Handle exceptions properly here. Omitted for clarity.

KnockKnockClient.java

This client takes input from the user
and sends it to the server.
Use another BufferedReader with
another InputStreamReader to get
input from System.in.

Note this pattern: System.in is a
source of input to your program, just
as the data we get from the server
either via a socket or
URLConnection.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 73

try (
Socket kkSocket = new Socket(hostName, portNumber);
PrintWriter out = new PrintWriter(kkSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(kkSocket.getInputStream()));
) {

BufferedReader stdIn =
new BufferedReader(new InputStreamReader(System.in));

String fromServer;
String fromUser;

while ((fromServer = in.readLine()) != null) {
System.out.println("Server: " + fromServer);
if (fromServer.equals("Bye."))

break;

fromUser = stdIn.readLine();
if (fromUser != null) {

System.out.println("Client: " + fromUser);
out.println(fromUser);

}
}
kkSocket.close();

} catch (Exceptions)//Handle exceptions properly here. Omitted for clarity.

KnockKnockClient.java

While the server is still sending us
data, keep getting input from the
user and sending it.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 74

try (
Socket kkSocket = new Socket(hostName, portNumber);
PrintWriter out = new PrintWriter(kkSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(kkSocket.getInputStream()));
) {

BufferedReader stdIn =
new BufferedReader(new InputStreamReader(System.in));

String fromServer;
String fromUser;

while ((fromServer = in.readLine()) != null) {
System.out.println("Server: " + fromServer);
if (fromServer.equals("Bye."))

break;

fromUser = stdIn.readLine();
if (fromUser != null) {

System.out.println("Client: " + fromUser);
out.println(fromUser);

}
}
kkSocket.close();

} catch (Exceptions)//Handle exceptions properly here. Omitted for clarity.

KnockKnockClient.java

The server sent us a message
saying “Bye”, which is defined by
the protocol as being time to finish.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 75

try (
Socket kkSocket = new Socket(hostName, portNumber);
PrintWriter out = new PrintWriter(kkSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(kkSocket.getInputStream()));
) {

BufferedReader stdIn =
new BufferedReader(new InputStreamReader(System.in));

String fromServer;
String fromUser;

while ((fromServer = in.readLine()) != null) {
System.out.println("Server: " + fromServer);
if (fromServer.equals("Bye."))

break;

fromUser = stdIn.readLine();
if (fromUser != null) {

System.out.println("Client: " + fromUser);
out.println(fromUser);

}
}
kkSocket.close();

} catch (Exceptions)//Handle exceptions properly here. Omitted for clarity.

KnockKnockClient.java

Read a line from the terminal.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 76

try (
Socket kkSocket = new Socket(hostName, portNumber);
PrintWriter out = new PrintWriter(kkSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(kkSocket.getInputStream()));
) {

BufferedReader stdIn =
new BufferedReader(new InputStreamReader(System.in));

String fromServer;
String fromUser;

while ((fromServer = in.readLine()) != null) {
System.out.println("Server: " + fromServer);
if (fromServer.equals("Bye."))

break;

fromUser = stdIn.readLine();
if (fromUser != null) {

System.out.println("Client: " + fromUser);
out.println(fromUser);

}
}
kkSocket.close();

} catch (Exceptions)//Handle exceptions properly here. Omitted for clarity.

KnockKnockClient.java

Write that line to the terminal, then
send the text to the server.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 77

try (
Socket kkSocket = new Socket(hostName, portNumber);
PrintWriter out = new PrintWriter(kkSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(kkSocket.getInputStream()));
) {

BufferedReader stdIn =
new BufferedReader(new InputStreamReader(System.in));

String fromServer;
String fromUser;

while ((fromServer = in.readLine()) != null) {
System.out.println("Server: " + fromServer);
if (fromServer.equals("Bye."))

break;

fromUser = stdIn.readLine();
if (fromUser != null) {

System.out.println("Client: " + fromUser);
out.println(fromUser);

}
}
kkSocket.close();

} catch (Exceptions)//Handle exceptions properly here. Omitted for clarity.

KnockKnockClient.java

Don’t forget to close the connection
when you’re done!!

CS 5010: Program Design Principles Fall 2017

© Northeastern University 78

Now the server…

CS 5010: Program Design Principles Fall 2017

© Northeastern University 79

try (
ServerSocket serverSocket = new ServerSocket(portNumber);
Socket clientSocket = serverSocket.accept();
PrintWriter out =

new PrintWriter(clientSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(clientSocket.getInputStream()));
) {

String inputLine, outputLine;
out.println("The knock knock server is here! Just come on along. ");
// Initiate conversation with client
KnockKnockProtocol kkp = new KnockKnockProtocol();
outputLine = kkp.processInput(null);
out.println(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processInput(inputLine);
out.println(outputLine);
if (outputLine.equals("Bye."))

break;
}

} catch (IOException e)// Do the right thing here. You should know by now.

KnockKnockServer.java

Set up the socket to be a server
listening on a specified port number
(keep it >1000).

CS 5010: Program Design Principles Fall 2017

© Northeastern University 80

try (
ServerSocket serverSocket = new ServerSocket(portNumber);
Socket clientSocket = serverSocket.accept();
PrintWriter out =

new PrintWriter(clientSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(clientSocket.getInputStream()));
) {

String inputLine, outputLine;
out.println("The knock knock server is here! Just come on along. ");
// Initiate conversation with client
KnockKnockProtocol kkp = new KnockKnockProtocol();
outputLine = kkp.processInput(null);
out.println(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processInput(inputLine);
out.println(outputLine);
if (outputLine.equals("Bye."))

break;
}

} catch (IOException e)// Do the right thing here. You should know by now.

KnockKnockServer.java

When a client comes along and
connects to the socket, go ahead
and accept the connection.
Now you have a way to
communicate directly with the client!

CS 5010: Program Design Principles Fall 2017

© Northeastern University 81

try (
ServerSocket serverSocket = new ServerSocket(portNumber);
Socket clientSocket = serverSocket.accept();
PrintWriter out =

new PrintWriter(clientSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(clientSocket.getInputStream()));
) {

String inputLine, outputLine;
out.println("The knock knock server is here! Just come on along. ");
// Initiate conversation with client
KnockKnockProtocol kkp = new KnockKnockProtocol();
outputLine = kkp.processInput(null);
out.println(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processInput(inputLine);
out.println(outputLine);
if (outputLine.equals("Bye."))

break;
}

} catch (IOException e)// Do the right thing here. You should know by now.

KnockKnockServer.java

Use the PrintWriter to send data out
through the clientSocket.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 82

try (
ServerSocket serverSocket = new ServerSocket(portNumber);
Socket clientSocket = serverSocket.accept();
PrintWriter out =

new PrintWriter(clientSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(clientSocket.getInputStream()));
) {

String inputLine, outputLine;
out.println("The knock knock server is here! Just come on along. ");
// Initiate conversation with client
KnockKnockProtocol kkp = new KnockKnockProtocol();
outputLine = kkp.processInput(null);
out.println(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processInput(inputLine);
out.println(outputLine);
if (outputLine.equals("Bye."))

break;
}

} catch (IOException e)// Do the right thing here. You should know by now.

KnockKnockServer.java

Once again, get the input stream
from the socket, wrap it in a input
stream, then wrap it in a
BufferedReader.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 83

try (
ServerSocket serverSocket = new ServerSocket(portNumber);
Socket clientSocket = serverSocket.accept();
PrintWriter out =

new PrintWriter(clientSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(clientSocket.getInputStream()));
) {

String inputLine, outputLine;
out.println("The knock knock server is here! Just come on along. ");
// Initiate conversation with client
KnockKnockProtocol kkp = new KnockKnockProtocol();
outputLine = kkp.processInput(null);
out.println(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processInput(inputLine);
out.println(outputLine);
if (outputLine.equals("Bye."))

break;
}

} catch (IOException e)// Do the right thing here. You should know by now.

KnockKnockServer.java

We’ll discuss this later, but it keeps
track of the joke state and
determines what should be said.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 84

try (
ServerSocket serverSocket = new ServerSocket(portNumber);
Socket clientSocket = serverSocket.accept();
PrintWriter out =

new PrintWriter(clientSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(clientSocket.getInputStream()));
) {

String inputLine, outputLine;
out.println("The knock knock server is here! Just come on along. ");
// Initiate conversation with client
KnockKnockProtocol kkp = new KnockKnockProtocol();
outputLine = kkp.processInput(null);
out.println(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processInput(inputLine);
out.println(outputLine);
if (outputLine.equals("Bye."))

break;
}

} catch (IOException e)// Do the right thing here. You should know by now.

KnockKnockServer.java

We’ll discuss this later, but it keeps
track of the joke state and
determines what should be said.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 85

try (
ServerSocket serverSocket = new ServerSocket(portNumber);
Socket clientSocket = serverSocket.accept();
PrintWriter out =

new PrintWriter(clientSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(clientSocket.getInputStream()));
) {

String inputLine, outputLine;
out.println("The knock knock server is here! Just come on along. ");
// Initiate conversation with client
KnockKnockProtocol kkp = new KnockKnockProtocol();
outputLine = kkp.processInput(null);
out.println(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processInput(inputLine);
out.println(outputLine);
if (outputLine.equals("Bye."))

break;
}

} catch (IOException e)// Do the right thing here. You should know by now.

KnockKnockServer.java

Read the input from the client.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 86

try (
ServerSocket serverSocket = new ServerSocket(portNumber);
Socket clientSocket = serverSocket.accept();
PrintWriter out =

new PrintWriter(clientSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(clientSocket.getInputStream()));
) {

String inputLine, outputLine;
out.println("The knock knock server is here! Just come on along. ");
// Initiate conversation with client
KnockKnockProtocol kkp = new KnockKnockProtocol();
outputLine = kkp.processInput(null);
out.println(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processInput(inputLine);
out.println(outputLine);
if (outputLine.equals("Bye."))

break;
}

} catch (IOException e)// Do the right thing here. You should know by now.

KnockKnockServer.java

Send the input from the client to the
protocol to determine how to
respond.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 87

try (
ServerSocket serverSocket = new ServerSocket(portNumber);
Socket clientSocket = serverSocket.accept();
PrintWriter out =

new PrintWriter(clientSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(clientSocket.getInputStream()));
) {

String inputLine, outputLine;
out.println("The knock knock server is here! Just come on along. ");
// Initiate conversation with client
KnockKnockProtocol kkp = new KnockKnockProtocol();
outputLine = kkp.processInput(null);
out.println(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processInput(inputLine);
out.println(outputLine);
if (outputLine.equals("Bye."))

break;
}

} catch (IOException e)// Do the right thing here. You should know by now.

KnockKnockServer.java

If the protocol says to say “Bye”, the
session is over and we can quit.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 88

try (
ServerSocket serverSocket = new ServerSocket(portNumber);
Socket clientSocket = serverSocket.accept();
PrintWriter out =

new PrintWriter(clientSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(

new InputStreamReader(clientSocket.getInputStream()));
) {

String inputLine, outputLine;
out.println("The knock knock server is here! Just come on along. ");
// Initiate conversation with client
KnockKnockProtocol kkp = new KnockKnockProtocol();
outputLine = kkp.processInput(null);
out.println(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processInput(inputLine);
out.println(outputLine);
if (outputLine.equals("Bye."))

break;
}

} catch (IOException e)// Do the right thing here. You should know by now.

KnockKnockServer.java

Don’t forget to close your
connection!!

CS 5010: Program Design Principles Fall 2017

© Northeastern University 89

Some notes, now that we’ve seen the code.

• The server runs and opens up a socket on a
specific port (e.g. 1200)

• The client runs, and we provide it with the name
of the server (hostname) and the port (e.g. 1200)

• When the server and client are running on the
same machine (e.g., testing), the hostname is
“localhost”

CS 5010: Program Design Principles Fall 2017

© Northeastern University 90

Remember this picture?

Knock Knock Server Knock Knock Client

TCP
header Application DataIP

header

CS 5010: Program Design Principles Fall 2017

© Northeastern University 91

Example 3 Summary
• The client reads input from the server, and sends

data to the server.
• The server reads input from the client, and sends

the data to the client.
• The protocol decides how to interpret the

messages sent between the client and the server.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 92

Communicating

CS 5010: Program Design Principles Fall 2017

© Northeastern University 93

Imagine two people talking to each other.
One is speaking in French, the other is speaking in

English.
How much communication is happening?

CS 5010: Program Design Principles Fall 2017

© Northeastern University 94

True communication can’t happen if we don’t agree
on what words mean what thing.

This is where the protocol comes in.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 95

All About Protocols
• Usually defined in a document
• Sometimes implemented as a library that can be

included in your code
• Whether your code uses an external library or

not, it needs to conform to the protocol

CS 5010: Program Design Principles Fall 2017

© Northeastern University 96

Knock Knock Protocol
• Can be represented by a state diagram (next

slide)
• The output is a combination of the current state

and the input (from the client)

CS 5010: Program Design Principles Fall 2017

© Northeastern University 97

Waiting

Another

SentKno
ckKnock

SentClue

“Knock Knock”

a clue: “Doris”

You’re
supposed to
say…

“Knock Knock”“Bye”

“Knock Knock”

“Door is
closed…”

CS 5010: Program Design Principles Fall 2017

© Northeastern University 98

switch(state){
case WAITING:

theOutput = "Knock Knock";
state = SENTKNOCKKNOCK;
break;

case SENTKNOCKKNOCK:

if (theInput.equalsIgnoreCase("")){
theOutput = clues[currentJoke];
state = SENTCLUE;

}
else{

theOutput = "You're supposed to say Who's there?";
}
break;

 case SENTCLUE:
if (theInput.equalsIgnoreCase(clues[currentJoke] + " who?")){

theOutput = answers[currentJoke] + " Want another? (y/n)";
state = ANOTHER;

}
else{//...

CS 5010: Program Design Principles Fall 2017

© Northeastern University 99

theOutput = answers[currentJoke] + " Want another? (y/n)";
state = ANOTHER;

}
else{

theOutput = "You're supposed to say... ";
state = WAITING;

}
break;

case ANOTHER:
if (theInput.equalsIgnoreCase("y")) {

theOutput = "Knock! Knock!";
if (currentJoke == (NUMJOKES - 1))

currentJoke = 0;
else

currentJoke++;
state = SENTKNOCKKNOCK;

} else {
theOutput = "Bye.";
state = WAITING;

}
break;

default:
theOutput = "Whaaaat?";
state = WAITING;
break;

}

CS 5010: Program Design Principles Fall 2017

© Northeastern University 100

Summary

CS 5010: Program Design Principles Fall 2017

© Northeastern University 101

Ways of Networking in Java
• Via URL Connection

– Create a URL
– Establish a connection
– Make requests:

• PUT
• GET

– Process response
– Can either read directly, or establish session and communicate

• Via Sockets
– Direct connection to a server via a socket listening on a port
– Must follow agreed-upon protocol

