
CS 5010: Program Design Principles Fall 2017

© Northeastern University 1

CS 5010: PDP
Lecture 12: Functional Programming
Fall 2017
Seattle

Adrienne Slaughter
ahslaughter@northeastern.edu

Regards to Deitel & Deitel,
How to Program Java

CS 5010: Program Design Principles Fall 2017

© Northeastern University 2

Agenda
• Functional Programming

– Programming Paradigms
– Motivation
– Terminology

CS 5010: Program Design Principles Fall 2017

© Northeastern University 3

INTRODUCTION

CS 5010: Program Design Principles Fall 2017

© Northeastern University 4

Terminology
• procedural

programming
• object-oriented

programming
• generic

programming
• functional

programming
• declarative

programming
• imperative

programming
• stream
• lambda, lambda

expression
• immutability
• concurrency
• reduction

• external vs internal
iteration

• terminal operation
• arrow token
• lazy evaluation
• eager
• method reference
• infinite streams

CS 5010: Program Design Principles Fall 2017

© Northeastern University 5

• Start with a stream of data (primitive or objects)
• Apply a series of operations or transformations

to the stream
• Reduce the stream to a single number or collect

the stream to collection

CS 5010: Program Design Principles Fall 2017

© Northeastern University 6

So many questions…
• What’s a stream, and is a list a stream? An array?

A hashmap?

CS 5010: Program Design Principles Fall 2017

© Northeastern University 7

How many times have you written code like this?

List<Record> records = new ArrayList<>();

int total = 0;

for (int i=0; i<records.size(); i++){
total += records.get(i).value();

}

CS 5010: Program Design Principles Fall 2017

© Northeastern University 8

How many times have you written code like this?

List<Record> records = new ArrayList<>();

int total = 0;

for (int i=0; i<records.size(); i++){
total += records.get(i).value();

}

What could go wrong?

CS 5010: Program Design Principles Fall 2017

© Northeastern University 9

How many times have you written code like this?

List<Record> records = new ArrayList<>();

int total = 0;

for (int i=0; i<records.size(); i++){
total += records.get(i).value();

}

External Iteration:
The programmer specifies the
iteration details.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 10

Let’s simplify for a moment.

int total = 0;

for (int i=0; i<10; i++){
total += i;

}

CS 5010: Program Design Principles Fall 2017

© Northeastern University 11

Let’s simplify for a moment.

int total = 0;

for (int i=0; i<10; i++){
total += i;

}

int total = IntStream.rangeClosed(1, 10)
.sum();

CS 5010: Program Design Principles Fall 2017

© Northeastern University 12

Let’s simplify for a moment.

int total = 0;

for (int i=0; i<10; i++){
total += i;

}

int total = IntStream.rangeClosed(1, 10)
.sum();

“For the stream of ints from 1
to 10, calculate the sum.”

CS 5010: Program Design Principles Fall 2017

© Northeastern University 13

Let’s simplify for a moment.

int total = 0;

for (int i=0; i<10; i++){
total += i;

}

int total = IntStream.rangeClosed(1, 10)
.sum();

CS 5010: Program Design Principles Fall 2017

© Northeastern University 14

Stream and Stream Pipeline
• Stream: sequence of elements
• Stream pipeline: sequence of tasks (“processing steps”) applied to

elements of a stream
• A stream starts with a data source.

– Examples:
• Terminal I/O
• Socket I/O
• File I/O

• A stream can generally be used like a queue– you’re reading from
it, but you can’t go back in the stream. Once you’ve pulled an
element off the stream, it’s no longer in the stream.

Adapted from: https://stackoverflow.com/questions/1216380/what-is-a-stream

CS 5010: Program Design Principles Fall 2017

© Northeastern University 15

The stream

int total = IntStream.rangeClosed(1, 10)
.sum();

IntStream produces a stream of
integers in the given range.
rangeClosed is closed– produces
ints including 1 and 10.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 16

The Stream Pipeline

int total = IntStream.rangeClosed(1, 10)
.sum();

The processing step to take, or task
to complete using the stream.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 17

The Stream Pipeline

int total = IntStream.rangeClosed(1, 10)
.sum();

The processing step to take, or task
to complete using the stream.

Reduction:
Reduces the stream of values into a
single value.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 18

The Stream Pipeline

int total = IntStream.rangeClosed(1, 10)
.sum();

The processing step to take, or task
to complete using the stream.

Reduction:
Reduces the stream of values into a
single value.

Internal Iteration:
IntStream handles all the
iteration details– we don’t
write them ourselves.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 19

The Stream Pipeline

Internal Iteration:
IntStream handles all the
iteration details– we don’t
write them ourselves.

External Iteration:
The programmer specifies the
iteration details.

Declarative
Programming:

Imperative
Programming:

CS 5010: Program Design Principles Fall 2017

© Northeastern University 20

The Stream Pipeline

Internal Iteration:
IntStream handles all the
iteration details– we don’t
write them ourselves.

External Iteration:
The programmer specifies the
iteration details.

Declarative
Programming:
Specify what to do

Imperative
Programming:
Specify how to do
something.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 21

The Stream Pipeline

int total = IntStream.rangeClosed(1, 10)
.sum();

intRange() sum()

But what if we want to sum
the even numbers between 2
and 20?

CS 5010: Program Design Principles Fall 2017

© Northeastern University 22

Summing even ints 2-20

int total = IntStream.rangeClosed(1, 10)
.map((int x) -> {return x * 2;})
.sum();

intRange() map() sum()

CS 5010: Program Design Principles Fall 2017

© Northeastern University 23

Summing even ints 2-20

int total = IntStream.rangeClosed(1, 10)
.map((int x) -> {return x * 2;})
.sum();

intRange() map() sum()

This converts the stream from
1:10 to 2:20 by multiplying by 2.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 24

.map()

• Takes a method, and applies it to every element
in the stream.

.map((int x) -> {return x * 2;})

Wait, what? A *method*?

CS 5010: Program Design Principles Fall 2017

© Northeastern University 25

lambdas: anonymous methods

• lambda or lambda expression
– aka anonymous method
– aka method-without-a-name
– aka the method that shall not be named

(int x) -> {return x * 2;}

CS 5010: Program Design Principles Fall 2017

© Northeastern University 26

lambdas: anonymous methods

(int x) -> {return x * 2;}

• Methods that can be treated as data
– pass lambdas as arguments to other methods (map)
– assign lambdas to variables for later use
– return a lambda from a method

CS 5010: Program Design Principles Fall 2017

© Northeastern University 27

lambdas: syntax

(int x) -> {return x * 2;}

(parameter list) -> {statements}

Parameter: one int named x Statement: return 2*x

CS 5010: Program Design Principles Fall 2017

© Northeastern University 28

lambdas: syntax

(int x) -> {return x * 2;}

(parameter list) -> {statements}

int multiplyBy2(int x){
return x * 2;

}

Same as:

Difference:
• the lambda doesn’t

have a name
• compiler infers return

type

CS 5010: Program Design Principles Fall 2017

© Northeastern University 29

lambdas: simplifying syntax

(int x) -> {return x * 2;}

Eliminate parameter type

(x) -> {return x * 2;} Type is inferred.
If it can’t be inferred,
compiler throws an
error.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 30

lambdas: simplifying syntax

(x) -> {return x * 2;}

Simplify the body

(x) -> x * 2 • return is inferred
• semicolon and

brackets not
necesary

CS 5010: Program Design Principles Fall 2017

© Northeastern University 31

lambdas: simplifying syntax

(x) -> x * 2

Simplify parameter list

x -> x * 2 Can remove parens
for single parameter

CS 5010: Program Design Principles Fall 2017

© Northeastern University 32

lambdas: simplifying syntax

() -> System.out.println(“Hello Lambda!”)

lambda with no parameters

CS 5010: Program Design Principles Fall 2017

© Northeastern University 33

lambdas: simplifying syntax

.map(x -> System.out.println(x))

method references

Sometimes, you want to just pass
the incoming parameter to
another method.

.map(System.out::println)

objectName::instanceMethodName

CS 5010: Program Design Principles Fall 2017

© Northeastern University 34

lambdas: scope
• Lambdas do not have their own scope

– Can’t shadow a method’s local variable with lambda
params with the same name

– Lambdas share scope with the enclosing method

CS 5010: Program Design Principles Fall 2017

© Northeastern University 35

Stream Pipeline: Intermediate & Terminal Operations

• map() is an intermediate operations
• sum() is a terminal operation

int total = IntStream.rangeClosed(1, 10)
.map((int x) -> {return x * 2;})
.sum();

CS 5010: Program Design Principles Fall 2017

© Northeastern University 36

Stream Pipeline: Intermediate & Terminal Operations

• map() is an intermediate operations
• sum() is a terminal operation

int total = IntStream.rangeClosed(1, 10)
.map((int x) -> {return x * 2;})
.sum();

Intermediate operations use lazy evaluation.
The operation produces a new stream object, but no operations
are performed on the elements until the terminal operation is

called to produce a result.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 37

Stream Pipeline: Intermediate & Terminal Operations

• map() is an intermediate operations
• sum() is a terminal operation

int total = IntStream.rangeClosed(1, 10)
.map((int x) -> {return x * 2;})
.sum();

Terminal operations use are eager.
The operation is performed when called.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 38

Examples
Intermediate Operations
• filter()
• distinct()
• limit()
• map()
• sorted()

Terminal Operations
• forEach()
• collect()

Reductions:
• average()
• count()
• max()
• min()
• reduce()

CS 5010: Program Design Principles Fall 2017

© Northeastern University 39

int total = IntStream.rangeClosed(1, 10)
.map((int x) -> {return x * 2;})
.sum();

Back to our example…

For this example, we chose to
create a stream of event ints
from 2 to 20 by mapping from
1:10, multiplying by 2.

How else can we do this?

CS 5010: Program Design Principles Fall 2017

© Northeastern University 40

int total = IntStream.rangeClosed(1, 20)
 .filter(x -> x%2 == 0)

.sum();

Back to our example…

Filter!

The lambda for the filter
operation needs to return a
boolean indicating whether
the given element should be in
the output stream.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 41

int total = IntStream.rangeClosed(1, 10)
.filter(

x -> {
System.out.printf("%nFilter: %d%n", x);
return x % 2 == 0;

})
.map(

x -> {
System.out.printf("map: %d", x);
return x * 3;

}
)
.sum();

System.out.println("\n\nTotal: " +total);

Clarifying elements through the pipeline

CS 5010: Program Design Principles Fall 2017

© Northeastern University 42

int total = IntStream.rangeClosed(1, 10)
.filter(

x -> {
System.out.printf("%nFilter: %d%n", x);
return x % 2 == 0;

})
.map(

x -> {
System.out.printf("map: %d", x);
return x * 3;

}
)
.sum();

System.out.println("\n\nTotal: " +total);

Clarifying elements through the pipeline

CS 5010: Program Design Principles Fall 2017

© Northeastern University 43

Collectors
• The terminal operation collect() combines

the elements of a stream into a single object, such
as a collection.

• There are many pre-defined collectors:
– Collectors.counting()
– Collectors.joining()
– Collectors.toList()
– Collectors.groupingBy()

CS 5010: Program Design Principles Fall 2017

© Northeastern University 44

Collectors
• The terminal operation collect() combines

the elements of a stream into a single object, such
as a collection.

• There are many pre-defined collectors:
– Collectors.counting()
– Collectors.joining()
– Collectors.toList()
– Collectors.groupingBy()

Returns the number of elements
in the stream.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 45

Collectors
• The terminal operation collect() combines

the elements of a stream into a single object, such
as a collection.

• There are many pre-defined collectors:
– Collectors.counting()
– Collectors.joining()
– Collectors.toList()
– Collectors.groupingBy()

Joins the elements of the stream
together into a String, with a
specified delimiter

CS 5010: Program Design Principles Fall 2017

© Northeastern University 46

Collectors
• The terminal operation collect() combines

the elements of a stream into a single object, such
as a collection.

• There are many pre-defined collectors:
– Collectors.counting()
– Collectors.joining()
– Collectors.toList()
– Collectors.groupingBy()

Puts the elements of the stream
into a List<> and returns it.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 47

Collectors
• The terminal operation collect() combines

the elements of a stream into a single object, such
as a collection.

• There are many pre-defined collectors:
– Collectors.counting()
– Collectors.joining()
– Collectors.toList()
– Collectors.groupingBy()

Groups the elements in the
stream according to some
parameter and returns a
HashMap keyed by the
“groupingBy” parameter.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 48

Another terminal: forEach()

• forEach() applies the given method to each
element of the stream.

• The method must receive one argument and
return void.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 49

A live example.

Who remembers Assignment 7, with all
that ski lift data?

CS 5010: Program Design Principles Fall 2017

© Northeastern University 50

reduce()
• Rather than using predefined reductions

(.sum(), .max(), etc), we can write our own
reduction.

int total = IntStream.rangeClosed(1, 10)
.reduce(1, (x, y) -> x * y);

CS 5010: Program Design Principles Fall 2017

© Northeastern University 51

reduce()
• Rather than using predefined reductions

(.sum(), .max(), etc), we can write our own
reduction.

int total = IntStream.rangeClosed(1, 10)
.reduce(1, (x, y) -> x * y);

The starting value.
This is the value for reduce(0)

CS 5010: Program Design Principles Fall 2017

© Northeastern University 52

reduce()
• Rather than using predefined reductions

(.sum(), .max(), etc), we can write our own
reduction.

int total = IntStream.rangeClosed(1, 10)
.reduce(1, (x, y) -> x * y);

The operation to perform.
Must take 2 parameters.
(Because it takes 2 params, we need to
use the parens in the lambda)

CS 5010: Program Design Principles Fall 2017

© Northeastern University 53

MISCELLANY

CS 5010: Program Design Principles Fall 2017

© Northeastern University 54

Producing a Stream from an Array

int total = IntStream.of(someInts)
.sum();

CS 5010: Program Design Principles Fall 2017

© Northeastern University 55

Producing a Stream from a Collection

List<String> strings = new ArrayList<>();
strings.stream();

CS 5010: Program Design Principles Fall 2017

© Northeastern University 56

Creating a String from an Array

String out = IntStream.of(someInts)
.mapToObj(String::valueOf)
.collect(Collectors.joining(" "));

Here, the mapToObj() operator is new.

It uses the specified method to convert
the input element to a new type.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 57

Using lines in a file as a stream

Files.lines(Paths.get("src/main/resources/PDPAssignment.csv"))

CS 5010: Program Design Principles Fall 2017

© Northeastern University 58

…flatMap()?
Pattern splitAtSpaces = Pattern.compile("\\s+");
String someStrings[] = {"one row", "some more words", "any other words", "and
once upon a time"};

Object list = Stream.of(someStrings)
.map(line -> splitAtSpaces.splitAsStream(line))
.collect(Collectors.toList());

What is the type of list after this is run?
How many elements are in the list?
4 elements in the final list.
(one for each entry in someStrings)

CS 5010: Program Design Principles Fall 2017

© Northeastern University 59

…flatMap()?
Pattern splitAtSpaces = Pattern.compile("\\s+");
String someStrings[] = {"one row", "some more words", "any other words", "and
once upon a time"};

Object list = Stream.of(someStrings)
.map(line -> splitAtSpaces.splitAsStream(line))
.collect(Collectors.toList());

Pattern splitAtSpaces = Pattern.compile("\\s+");
String someStrings[] = {"one row", "some more words", "any other words", "and
once upon a time"};

Object list = Stream.of(someStrings)
.flatMap(line -> splitAtSpaces.splitAsStream(line))
.collect(Collectors.toList());

What is the type of list after this is run?
How many elements are in the list?
4 elements in the final list.
(one for each entry in someStrings)

CS 5010: Program Design Principles Fall 2017

© Northeastern University 60

…flatMap()?
Pattern splitAtSpaces = Pattern.compile("\\s+");
String someStrings[] = {"one row", "some more words", "any other words", "and
once upon a time"};

Object list = Stream.of(someStrings)
.flatMap(line -> splitAtSpaces.splitAsStream(line))
.collect(Collectors.toList());

When I really want 13 items in the final list
(one for every word in the original input), I
use flatMap().
When the output of a map() is a collection,
flatMap() flattens the result by adding all the
items in the output to the stream individually,
rather than as a collection.

CS 5010: Program Design Principles Fall 2017

© Northeastern University 61

Immutability
• A tenet of functional programming is

immutability
– An object is not mutable– it can’t change
– Rather than change state (mutate it), create a new

copy with the new state
– Helps with concurrency

CS 5010: Program Design Principles Fall 2017

© Northeastern University 62

APPLYING OF THIS TO OBJECTS,
NOT JUST PRIMITIVE TYPES

CS 5010: Program Design Principles Fall 2017

© Northeastern University 63

CS 5010: Program Design Principles Fall 2017

© Northeastern University 64

Summary

CS 5010: Program Design Principles Fall 2017

© Northeastern University 65

Functional Programming
• Stream that gets mapped, filtered, reduced, and collected… in

some order.
– Intermediate operations are not executed until a terminal operation is

called.

• Lambdas: unnamed methods (functions) that can be applied to a
stream

• Declarative vs. imperative

