
ADTs, Interfaces,

Inheritance & Polymorphism

Maria Zontak

Superclass

Subclass

Credits: CS143 course I taught in North Seattle College
CS5004 course built by Dr. Therapon Skotiniotis here in Northeastern

Materials from MIT, Software Constructions – 6.005 1

2

Abstract Data Type
What ?

• Abstract data types are an instance of a general principle in
software engineering

• ADT defines a contract for a data type with specific invariants

Why?

• Safe from bugs - a well-defined ADT preserves its invariants, thus will be

less vulnerable to bugs in the ADT’s clients. Violations of the invariants can
be more easily isolated within the implementation of the ADT itself.

• Easy to understand – complex implementation is hidden behind a set of

simple operations, so the ADT client only needs to understand the
operations, not the details of the implementation.

• Ready for change – Representation independence allows the

implementation of an ADT to change without requiring changes from its
clients.

3

Who cares?

• The clients only cares about ADT (what each operation does)

• The developer cares about Concrete Implementation and needs to

Do the right thing!

understand what each operation should do.

Do the thing right!

design a program that implements the specification correctly

4

Bread and Butter of any Software Engineer

• Abstraction - Omitting or hiding low-level details with a simpler, higher-
level idea.

• Modularity - Dividing a system into components or modules, each of
which can be designed, implemented, tested, reasoned about, and reused
separately from the rest of the system.

• Encapsulation - Building walls around a module (a hard shell or capsule)
so that the module is responsible for its own internal behavior, and bugs in
other parts of the system can’t damage its integrity.

• Information hiding - Hiding details of a module’s implementation from
the rest of the system, so that those details can be changed later without
changing the rest of the system.

• Separation of concerns - Making a feature (or “concern”) the
responsibility of a single module, rather than spreading it across multiple
modules.

5

Classifying Types
• Mutable - The objects of a mutable type can be

changed must provide operations which when
executed cause a change of state of this

• Immutable – State cannot be changed. For example:
String is immutable, because its operations create
new String objects rather than changing existing ones.

– Immutability is an example of invariant

– Once created, an immutable object should always
represent the same value, for its entire lifetime.

An invariant is a property of a program that is always true,
for every possible runtime state of the program

6

Classifying Operations
• Creators - create new objects of the type. A creator may take an

object as an argument, but NOT an object of the type being
constructed. Schematically: t* → T [* occurs zero or more time]

• Producers - create NEW objects from OLD objects of the type. The
For example: concat of String: it takes two strings and produces a
new one representing their concatenation.

Schematically: T+, t* → T [+ occurs one or more times]

• Observers - take objects of the abstract type and return objects of a
different type. For example: size of List: returns an int.
Schematically: T+, t* → t

• Mutators - change objects. For example: add method of List,
mutates a list by adding an element to the end.

Schematically: T+, t* → void|t|T

7

ADT examples in Java
int is Java’s primitive integer type. int is immutable, so it has no mutators.
• creators: the numeric literals 0, 1, 2, …

• producers: arithmetic operators +, -, ×, ÷

• observers: comparison operators ==, !=, <, >

• mutators: none (it’s immutable)

List is Java’s list type. List is mutable. List is also an interface  other classes
provide the concrete implementation (For example: ArrayList and LinkedList).
• creators: ArrayList and LinkedList constructors, Collections.singletonList

• producers: Collections.unmodifiableList

• observers: size, get

• mutators: add, remove, addAll, Collections.sort

String is Java’s string type. String is immutable.
• creators: String constructors

• producers: concat, substring, toUpperCase

• observers: length, charAt

• mutators: none (it’s immutable)

Interface
WHAT?

• Useful language mechanism for expressing an abstract data type

• Set of method declarations (signatures)/common behaviors

• Contract /protocol of what the classes can do.

 Class that agrees to interface MUST implement its behaviors

WHY needed?

• Allows interaction, without knowing specific implementation

• Take advantage of multiple inheritance for one class.

• Achieves polymorphism 

Classes that implement the same interface can be treated similarly

8

UML Diagramm

Interface I
• method signatures of I,

without code;
• no instance variables

Concrete
Class C

methods of I,
including code

• other methods,
• instance variables of C

9

SimThing Interface
Interface declaration
/** Interface for all objects involved in the simulation */

public interface SimThing {

public abstract void tick();

public abstract void redraw();

}

Class declaration using the interface
/** Base class for all Ship */

public class Ship implements SimThing {

/** tick method for Ships */

public void tick() { … }

/** redraw method for Ships */

public void redraw() { … }

}

It is permitted, but
discouraged (a matter of

style), to redundantly
specify the public and/or

abstract modifier for a
method declared in an

interface.

A method that is
declared but NOT

implemented

The implementation
comes in the class

that implements the
interface 10

implements
• Java interface declares a set of method signatures

– Says what behavior exists

– Does not say how the behavior is implemented (no code for the
methods)

– Does not describe any state (but may include “final” constants)

• Concrete class that implements an interface

– Contains implements InterfaceName in the class
declaration

– Must provide implementations (either directly or inherited from
a superclass) of all methods declared in the interface

11

Shape Interface
GOAL: Design a program that manipulates shapes on a canvas.

• Possible shapes:

– a circle has a pin (its center) and a radius

– a square has a pin (the top left corner) and a side

– a rectangle has a pin (the top left corner), a width and a height

Is this sufficient for writing an interface?

NO, we need to define behavior!

• Required behavior for each shape:

– move a shape on the canvas in the x-direction

– move a shape on the canvas in the y-direction

– calculate the area of a shape

– calculate the circumference of a shape
12

Shape Interface
/** Interface for all shapes on canvas*/

public interface Shape {

void moveX();

void moveY();

double area();

double circumference();

}

Is this the only possible way to translate words into interface?
/** Interface for all IMMUTABLE shapes on canvas*/

public interface Shape {

Shape moveX();

Shape moveY();

double area();

double circumference();

}

Immutable objects
are objects that

cannot be modified

Defines a TYPE

13

Types in Java:

1. Primitive— int/long, char, boolean and floating point (double,
float).

2. Non-primitive—Classes, Interfaces, and Arrays.

An instance of a class named Example conforms to all of these types:

1. The named class (Example)

2. Every interface that Example implements

3. More to come…

The instance can be used anywhere one of its types is appropriate

– As variables, as arguments, as return values

What is the Type of an Object?

14

Abstracting Common Behavior/Fields

• Possible shapes:

– a circle has a pin (its center) and a radius

– a square has a pin (the top left corner) and a side

– a rectangle has a pin (the top left corner), a width
and a height

Is there anything common for all the shapes above?

Yes, pin

What should we do about it?

Abstract it in a common class, let’s see how…

15

tells Java to call the
parent (or superclass)

constructor

Abstracting Common Behavior/Fields
public abstract class AbstractShape implements Shape

{

protected Point2D pin;

public AbstractShape(Point2D pin) {

this.pin = pin;

}

}

public class Circle extends AbstractShape {

private int radius;

public Circle(Point2D pin, int radius) {

super(pin);

this.radius = radius;

}

}

Any subclass class of
this class will inherit

this field

refers to the fields
and methods of this

specific instance Circle inherits
all protected

and public
methods of

AbstractShape

16

‘Is-a’ in Programming: Inheritance
Java, C++ and more provide direct support for “IS - A”:

• Class Inheritance - new class extends existing class

• Key for good object-oriented programming:

– Using the SAME code in MANY contexts  Reusable code

– Reduce bugs  Robust and maintainable

• Terminology:

Superclass
Subclass

17

Derived/sub class

• Automatically inherits all instance

variables and methods of the base class
– Private fields/methods are not accessible. Why?

– Reason: subclassing will NOT break encapsulation.

• Can add additional methods and

instance variables

• Can provide different versions

of inherited methods  override
– Use the @Override annotation for Javadoc

– Signature MUST remain the same, excluding:
• Overriding method can allow more access

• Overriding method can return a subtype of the type returned by the
overridden method.

– To call overridden method use super.<method-name>(<args>)

Inheritance - Vocabulary and
Principles

base class/super class

derived class/sub class

18

Member Access in Subclasses
What kind of field/method modifiers do you know?

• public: accessible anywhere the class can be accessed

• private: accessible only inside the same class

– Does not include subclasses, which have no access to
private fields/methods of their superclass

• protected: accessible inside the defining class and all its
subclasses

– Use protected for "internal" things that subclasses also
are intended to access

19

Types in Java:

1. Primitive— Integer, Character, Boolean, and Floating Point.

2. Non-primitive—Classes, Interfaces, and Arrays.

An instance of a class named Example conforms to all of these types:

1. The named class (Example)

2. Every interface that Example implements

3. Every superclass that Example extends directly or indirectly

The instance can be used anywhere one of its types is appropriate

– As variables, as arguments, as return values

What is the Type of an Object?

20

Abstract Class

Abstract class

• CANNOT be instantiated

AbstractShape myShape = new AbstractShape(); is ILLEGAL

Why?

They are missing implementations of one or more methods
defined in the interface

 intended to be extended by a concrete class

• BUT we will see later that:

AbstractShape[] shapes COMPILES (is LEGAL)

public abstract class AbstractShape implements Shape {

protected Point2D pin;

public AbstractShape(Point2D pin) {

this.pin = pin;

}

}

21

INTERFACE INHERITANCE

“Is –A” Relationship V V

Code Sharing X (V only in Java 8
and on)

V

BA B implements
interface A
 B inherits the
method signatures
from A (must
implement them)

B extends class A
 B inherits
everything from A
(including any
method code and
instance variables)

Interfaces vs Inheritance

Specification Implementation

Both specify a type
22

Abstract Class

▪ A class can extend at most one
superclass (abstract or not)

▪ Can include instance variables

▪ Wider range of modifiers

▪ Can specify constructors,
which subclasses can invoke
with super

Interface

▪ A class can implement any
number of interfaces

▪ Keeps state and behavior
separate

▪ Provides fewer constraints on
algorithms and data
structures

▪ Interfaces with many method
specifications are tedious to
implement (implementations
cannot be inherited)

Which to use?

23

– Before Java 8 - Pure specification

– Starting from Java 8 :

• default (“defender”)

• static methods (never inherited)

Interfaces in Java 8 and on

24

Example:
https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

How to extend an interface (yes! interface can extend interface)
that contains a default method?
1. Do NOT mention the default method at all

 extended interface inherits the default method
2. Redeclare the default method makes it abstract.
3. Redefine the default method  overrides it.

????????????????????????????????

➢ How to access overridden method?

➢ What if the class implements two interfaces and both those
interfaces define a default method with the same signature?

‘default’ Implementation for Interface

03-25

https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

public interface A {

default void foo(){

System.out.println(“implements A");

}

}

public interface B {

default void foo(){

System.out.println(“implements B");

}

}

public class ClassAB implements A, B {

…}

 DIAMOND PROBLEM

fails to compile with the following result:
java: class ClassAB inherits unrelated defaults for foo() from

types A and B

‘default’ Implementation for Interface

26

To fix that, in ClassAC override the conflicting method:
public class ClassAB implements A, B {

public void foo(){

System.out.println(“implements A & B");

}

}

You can directly call the default implementation of method foo()
from interface A (or interface B)
public class ClassAB implements A, B {

public void foo(){

A.super.foo();

}

}

‘default’ Implementation for Interface

Allow multiple
inheritance ONLY when

you have no other choice

27

Rules of thumb to design software that can evolve over time:

• Your contract to client should be captured by an interface

• Any major type should be defined in an interface

• Abstract out/implement possible common fields/behaviors of
the interface using abstract class

• Client code can choose:

1. Extend the abstract class implementation, overriding
methods that need to be changed

2. Implement the complete interface directly (needed if the
class already has a specified superclass)

• This pattern occurs frequently in the standard Java libraries

A Design Strategy

28

Additional Example of Inherticane Design:
Law firm employee

Goal: demonstration of additional Java rules for inheritance

Disclaimer: The below implementation omits interfaces.
Generally you should make an interface for any major type

COMMON rules:
hours, vacation,

benefits, regulations

SPECIFIC rules
@override

or add
30

Separating behavior

• Advantages of the separate manuals:

– Maintenance: Only one update if a common rule changes.

– Locality: Quick discovery of all rules specific to lawyers.

• Key ideas from this example:

– General rules are useful (the 20-page manual).

– Specific rules that may override general ones are also
useful.

31

Employee regulations
Work
Hours

per
week

Salary ($)
per year

per employee

Paid Vacation
per year

Color of
the leave
applicati
on form

All
Employees

40 40,000 2 weeks Yellow

Exceptions Legal Secretaries:
+5,000 (45,000)

Marketers:
+10,000 (50,000)

Lawyers:
+ 1 weeks
(3 weeks in total)

Lawyers:
Pink

32

An Employee class

// A class to represent employees in general (20-page

manual).

public class Employee {

public int getHours() {

return 40; // works 40 hours / week

}

public double getSalary() {

return 40000.0; // $40,000.00 / year

}

public int getVacationDays() {

return 10; // 2 weeks' paid vacation

}

public String getVacationForm() {

return "yellow"; // use the yellow form

}

}

33

• Lawyers know how to sue.

• Marketers know how to advertise.

• Secretaries know how to take dictation.

• Legal secretaries know how to prepare legal documents.

Employee unique behaviors

34

Inheritance as a mechanism for Code Sharing
// A class to represent secretaries.
public class Secretary extends Employee {

public void takeDictation(String text) {

System.out.println("Taking dictation of text: " + text);

}

}

04-35

// A class to represent lawyers.

public class Lawyer extends Employee {

// overrides getVacationForm from Employee class

public String getVacationForm() {

return "pink";

}

// overrides getVacationDays from Employee class

public int getVacationDays() {

return 15; // 3 weeks vacation

}

public void sue() {

System.out.println("I'll see you in court!");

}

}

Multiple Levels of inheritance
Example - Legal secretary:

– Same as a regular secretary

– Unique behaviours:

• Makes more money ($45,000)

• Can file legal briefs.

// A class to represent legal secretaries.

public class LegalSecretary extends Secretary {

public void fileLegalBriefs() {

System.out.println("I could file all day!");

}

public double getSalary() {

return 45000.0; // $45,000.00 / year

}

} 04-39

Changes to common behavior
• Everyone is given a $10,000 raise due to inflation.

– The base employee salary is now $50,000.

– Legal secretaries now make $55,000.

– Marketers now make $60,000.

• Code should be modified, to reflect this policy change.

Following our previous design we need to modify:

– Employee class

– Every subclass that has overridden getSalary()

This is a poor design. Why?

Problem: The subclasses' salaries are based on the Employee

salary, but the getSalary code does not reflect this.
04-40

After modification
// A class to represent employees (20-page manual).

public class Employee {

public int getHours() {

return 40; // works 40 hours / week

}

public double getSalary() {

return 50000.0; // $50,000.00 / year

}

...

}

//subclass can call overridden method

public class LegalSecretary extends Secretary {

public double getSalary() {

double baseSalary = super.getSalary();

return baseSalary + 5000.0;

}

...

}

04-41

After modification

public class Lawyer extends Employee {

public String getVacationForm() {

return "pink";

}

public int getVacationDays() {

return super.getVacationDays() + 5;

}

public void sue() {

System.out.println("I'll see you in court!");

}

}

public class Marketer extends Employee {

public void advertise() {

System.out.println("Act now while supplies last!");

}

public double getSalary() {

return super.getSalary() + 10000.0;

}

}

04-42

Inheritance and constructors

Adding more vacation days:

– For each year - award 2 additional vacation days.

– Upon construction of the Employee object - pass in the
number of years the person has been with the company.

This requires to modify the Employee class:

– add new state

– add new behavior

04-43

Modified Employee class
public class Employee {

protected int years;

public Employee(int initialYears) {

years = initialYears;

}

public int getHours() {

return 40;

}

public double getSalary() {

return 50000.0;

}

public int getVacationDays() {

return 10 + 2 * years;

}

public String getVacationForm() {

return "yellow";

}

}

04-44

After adding constructor
WITH parameters to the

Employee class
 the subclasses do not

compile

Constructors are NOT inherited.
 If a superclass have a

constructor with parameters
 subclasses must have as well.

In details…
• Subclasses do NOT inherit the Employee(int) constructor.

• Subclasses receive a default constructor that contains:
public Lawyer() {

super(); // calls Employee() constructor

}

• But Employee(int) replaces the default Employee().

The subclasses' default constructors are now trying to call a non-
existent default Employee constructor.

 Solution:
public class Lawyer extends Employee {

public Lawyer(int years) {

// calls Employee constructor

super(years);

}

...

} 04-45

The super call must be the
FIRST statement in the

constructor

1. NO constructor is written in a class Java assumes there is an
empty, zero argument constructor ClassName() { }

– If you write any constructor, Java does not make this assumption

2. super(…) is not written as the first line of an extended class
constructor  the compiler assumes the constructor starts with a
call to super() – default super constructor;

 BE SPECIFIC in your code for readability

Upon construction of an extended class object

 there must be a constructor in the parent class with parameter list
that matches the explicit or implicit call to super(…)

• Corollary: a constructor is always called at each level of the
inheritance chain when an object is created

Inheritance and constructors - RULES to remember:

47

Modified Secretary class
• Secretary years of employment are not tracked.

• They do not earn extra vacation for years worked.
// A class to represent secretaries.

public class Secretary extends Employee {

public Secretary() {

super(0);

}

…

}

• Secretary does NOT require parameters to its constructor

 LegalSecretary compiles without a constructor.

• Its default constructor calls the Secretary() constructor.

– What will be the result of getYears on a Secretary?

 0  BAD solution

– DIY: What if we wanted to give some other reward (vacation
bonus) to all employees based on years of service? 04-48

Inheritance Summary
If class B extends A (inherits from A) ...

• Class B inherits all methods and fields from class A

• But... "all" is too strong

– constructors are not inherited but there is a way to use
super class constructors during object creation

– same is true of static methods and static fields

– private data is hidden from derived class implementation
but can access through get/set methods from base class (if
they exist!) OR just set it to be protected

• Class B may contain additional (new) methods and fields

– Has no way to delete any

51

Intro to Polymorphism
Employee e = new Employee();

What methods can we call?

Lawyer h = new Lawyer ();

What methods can we call?

e = h;

Is this legal? What’s going on here?

52

Intro to Polymorphism
• If class B implements/extends A...

– Object B can do anything that A can do (because of inheritance)

– Object B can be used in any context where A is appropriate

 Same code could be used with different types of objects and behave

differently with each.

For example: System.out.println - prints ANY type of object (Each is

displayed in its own way on the console) .

• A variable that can refer to objects of different types is said to be

polymorphic
– Employee ed = new Lawyer();

A variable of type T can hold an object of any subclass of T.

04-53

Coding with polymorphism
• A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

• You can call any methods from the Employee class on ed.

• When a method is called on ed, it behaves as a Lawyer.

System.out.println(ed.getSalary()); // 50000.0

System.out.println(ed.getVacationForm()); // pink

04-55

Dynamic binding - Choosing a method at runtime is called.

Static and Dynamic Types

– Static/compile time type : the declared type of the
reference variable. Used by the compiler to check syntax.

– Dynamic/runtime-time type: the object type the variable
currently refers to (can change as program executes)

Employee ed = new Lawyer();

57

Polymorphism and parameters
• You can pass any subtype of a parameter's type.

public class EmployeeMain {

public static void main(String[] args) {

Lawyer lisa = new Lawyer();

Secretary steve = new Secretary();

printInfo(lisa);

printInfo(steve);

}

public static void printInfo(Employee empl) {

System.out.println("salary: " + empl.getSalary());

System.out.println("v.days: " + empl.getVacationDays());

System.out.println("v.form: " + empl.getVacationForm());

System.out.println();

}

}

OUTPUT:

salary: 50000.0 salary: 50000.0
v.days: 15 v.days: 10
v.form: pink v.form: yellow

04-58

Polymorphism and arrays
• Arrays of superclass types can store any subtype as elements.

public class EmployeeMain2 {
public static void main(String[] args) {

Employee[] e = { new Lawyer(), new Secretary(),
new Marketer(), new LegalSecretary() };

for (int i = 0; i < e.length; i++) {
System.out.println("salary: " + e[i].getSalary());
System.out.println("v.days: " + e[i].getVacationDays());
System.out.println();

}
}

}

Output:

salary: 50000.0
v.days: 15

salary: 50000.0
v.days: 10

salary: 60000.0
v.days: 10

salary: 55000.0
v.days: 10

04-59

Casting references
• A variable can only call that type’s (compile-time type) methods, not a

subtype’s (runtime type).
Employee ed = new Lawyer();

int hours = ed.getHours(); // ok; it's in Employee

ed.sue(); // compiler error

• Compiler's reasoning :variable ed could store any kind of employee,

and not all kinds know how to sue .

• To use Lawyer methods on ed  cast it.

Lawyer theRealEd = (Lawyer) ed;

theRealEd.sue(); // ok

((Lawyer) ed).sue(); // shorter version

As a good practice – AVOID creating design where you need to cast.

04-73

More about casting
• Do NOT cast an object too far down the tree.

Employee eric = new Secretary();

((Secretary) eric).takeDictation("hi"); // ok

((LegalSecretary) eric).fileLegalBriefs(); //

exception

// (Secretary object does not know how to file briefs)

• Do NOT cast sideways (only up or down casting works).

Lawyer linda = new Lawyer();

((Secretary) linda).takeDictation("hi"); // error

• Casting does NOT actually CHANGE the object's behavior.

It just gets the code to compile/run.

((Employee) linda).getVacationForm() // pink

(Lawyer's)

74

Dynamic Dispatch - Summary

• “Dispatch” - the act of actually placing a method in execution
at run-time

• Static types - the compiler knows exactly what method must
execute

• Dynamic types - the compiler knows the name of the method
but…

There could be ambiguity about which version of the method

will actually be needed at run-time:
– The decision is deferred until run-time  dynamic dispatch

– The chosen method matches the dynamic (actual) type of the object

Employee ed = new Lawyer();

83

Method Lookup: How Dynamic Dispatch Works

• When a message is sent to an object, the right method to run
is the one in the most specific class that the object is an
instance of
– Ensures that method overriding always has an effect

• Method lookup (a.k.a. dynamic dispatch) algorithm:
– Start with the actual run-time class (dynamic type) of the receiver

object (not the static type!)

– Search that class for a matching method

– If one is found, invoke it

– Otherwise, go to the super class, and continue searching

84

04-85

Related Dynamic Dispatch Topics

toString()

instanceof: <object> instanceof <classOrInterface>

– checking types of generic objects before casting
•if (otherObject instanceof Blob) {

• Blob bob = (Blob) otherObject;

• ….

•}

super is NOT polymorphic

https://docs.oracle.com/javase/specs/jls/se7/ht
ml/jls-15.html#jls-15.11.2

04-86

https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.11.2

Here are a few suggestions:

• What about getPay()?

 Must be included in Employee, so polymorphic code can use it

 /** Return the pay earned by this employee */

public double getPay() {return 0.0;}

Does this make sense? Fix at home!!!

Hint: go back to Shape example…

You can also add interfaces as discussed…

DIT – continue to improve Lawyers firm design

87

Many Shapes to Polymorphism

88

There are 3 kinds of polymorphism that we will explore:
• Subtype polymorphism (we saw today)

Coming next week:
• Ad-hoc polymorphism (or overloading)
• Parametric polymorphism (or Generics in Java)

