
Assignment 9:
2-Player Client-Server Yahtzee

CS 5010
Released: November 27, 2017
Due: December 4, 2017

Abstract

Yahtzee is a dice-rolling game. The game requires 5 dice and a scorecard, and can be played
by (theoretically) any number of players. Gameplay consists of two phases: the Rolling phase,
and the Scoring phase. In the Rolling phase, players can roll as many of the dice as they want,
for up to 3 times total. At each roll, players can keep or re-roll as many dice as they want. In the
Scoring phase, the player chooses which entry on the scorecard they want to fill, given the final
values on the rolled dice. The player with the highest number of points on the scorecard at the
end wins. As you can imagine, it’s important to be familiar with the scorecard and figure out a
strategy to maximize points. However, in this assignment, you’re less concerned with winning,
and should be more concerned with how to make the game play fun and easy for your players.

1 Assignment Objectives

The objectives of this assignment are to:

• Write a client to a given protocol

• Build a text-based UI that runs on the command line

• Implement a client-server application

2 Background

We learned that a client server application requires a server application, a client application, and a
protocol defined to ensure consistent communication between the two. In this assignment, you are
going to write a client app that connects to an already-written server application, implementing
the game protocol.

In the end, you will have a game that you can play!

3 Introduction to Yahtzee

Yahtzee is a dice game. The goal is to fill out a score card, based on rolls of the dice. There are
12 rounds to the game– one for each line on the scorecard. Each player goes through a round of
rolling the dice, and then chooses which row of the scorecard to fill out. This results in points.

3.1 The Scorecard

Below is the scorecard used for Yahtzee. Note, you do not need to implement this—scoring is done
on the server. But being familiar with the scorecard will be helpful for your implementation. The
ID column indicates what the score row is referred to in this game implementation.

1



Upper Section

Pattern Condition Score ID

Aces none total value of all aces (ones) Aces
Twos none total value of all twos Twos

Threes none total value of all threes Threes
Fours none total value of all fours Fours
Fives none total value of all fives Fives
Sixes none total value of all sixes Sixes

Lower Section

Pattern Condition Score ID

Three of a kind 3 or more equals total value of all dice ThreeOfKind
Four of a kind 4 or more equals total value of all dice FourOfKind

Full House 3 equals + 2 other equals 25 FH
Small Straight sequence of 4 or more 30 SS
Large Straight sequence of 5 40 LS

Yahtzee 5 equals 50 Yahtzee
Chance none total value of all dice Chance

4 How to build this?

Notice, the instructions so far have been all about implementing the client. You will be provided
with a server implementation to use for development.

4.1 How to run the server locally

You’ve been given the .jar file that runs the server. To run it locally, save the jar file somewhere.
Use the terminal to navigate to the jar file. Run like:

1 java -jar YahtzeeServer.jar 1200

(the 1200 is the port number– it can be anything over 1024, mostly). The server waits for 2
clients to connect, then starts the game. Make sure your client connects to localhost and on the
specified port.

Yahtzee is a long game. To facilitate development and debugging, you can start the server in
DEVELOP mode, which will run the game with only 1 player and 3 rounds.

1 java -jar YahtzeeServer.jar 1200 DEV

If you’re having trouble, you may need to make sure your java is pointing at a Java 1.8 VM to
run it.

After you start the server, you can run your client.
To run your client from IntelliJ while you’re developing, you can modify the Run configuration to

take the appropriate command line argument by going to “Run → Edit Configurations... ”. Choose
your configuration on the left, and put “localhost <portnumber>” in the Program Arguments field.

4.2 Requirements

Your client must:

• Run from the command line, given a hostname and port number

• Connect to the server via a socket

• Get info from the user and format it appropriately to send to the server.

2



5 What To Turn In

When submitting your assignment, you should continue using the same Maven archetype that we
used in previous assignments.

You will want to submit the following:

• Class PlayYahtzee. This class will be assumed to be the starting point of your program, and
will be called from the command line.

• All classes that you have developed for this assignment

• All classes that you developed to test your code

• A UML diagram showing the design of your program

• A brief write-up, which summarizes the main relations between your classes, and how does
your program handle errors and/or exceptions.

3



6 The game protocol

A protocol is defined by a set of “Frames” or messages that are sent between the server and client.
The frames specify the beginning and end of a message, and the actual message is in the “payload”
of the frame. Consider that our clients and servers are listening to streams of data coming in. How
does your client know where the end of the frame is, in order to parse the message?

In this protocol, the newline (\n) character is the end of a frame. The beginning of a frame is
a tag (string) followed by a colon (‘:’), which is then followed by a payload. Your client recognizes
receipt of a frame, parses the frame type from the frame header, and then uses that information to
parse the payload and respond accordingly.

In the next sections, the client and server frames are defined. After that, the list of the inter-
action of the frames.

6.1 Client Frames

These are the messages that can be sent from the client to the server.

1. KEEP DICE
Payload: 10 ints. The first 5 are the original dice that were passed in “ChooseDice”, and
another 5, which must be 0 or 1s to indicate whether to keep the relevant dice. If the original
dice sent were “1 2 6 4 1” and the player wants to keep the 1st, 2nd and 5th, the payload
would be “1 2 5 4 1 1 1 0 0 1”.

2. SCORE CHOICE
Payload: Name of score to take

3. ACK
Sends an acknowledgement of a message. Payload: an optional string describing the acknowl-
edgement.

4. PRINT GAME STATE
Prints the current game state on the server terminal. Payload: empty.

6.2 Server Frames

1. START GAME
Payload: empty

2. START ROUND
Payload: Which round

3. START TURN
Payload: empty

4. CHOOSE DICE
Payload: 5 ints, with values 1-6, each representing a given die roll.

5. INVALID DICE CHOICE
Payload: None

6. CHOOSE SCORE
Payload: 5 ints that are the current dice rolls, and then a sequence of strings of the names of
the score slots to be chosen from.

7. SCORE CHOICE INVALID
Payload: the same payload as CHOOSE SCORE.

4



8. SCORE CHOICE VALID
Payload: A list of all the scores on the scorecard and their values. Value is -1 if it has not
been used yet. Order is arbitrary. Total is at the end.
Example: Aces -1 Twos 6 Fives 5 3K 6 [...] Total 75

9. TURN OVER
Payload: empty

10. ROUND OVER
Payload: which round is over.

11. GAME OVER
Payload: A list of the final scores for each player.
Example: Player1 109 Player2 74

12. ACK
Payload: an optional string describing an acknowledgement of receipt of a message from the
client.

13. INFO
Payload: a string providing an informational message from the server to the client.

6.3 Interaction

1. Server starts

2. First client/player connects

3. Second client/player connects

4. Server sends “StartGame” to all clients

5. Game play rounds begins. Server sends StartRound message to all players.
For each client/player, this is the sequence for each player in each round:

(a) Server sends StartTurn message

(b) Start the rolling phase. While the player has rolled < 3 times or not kept all the dice:

i. Server rolls the dice and sends ChooseDice message
ii. Client sends KeepDice message
iii. Server sends valid/invalid KeepDice choice message

(c) Start the scoring phase.

i. Server sends set of score choices for client to choose from
ii. Client sends score choice
iii. Server sends valid/invalid score choice.

(d) Server sends TurnOver message.

6. repeat for each player

7. repeat for each round (13 rounds total, unless in DEV mode)

8. Server sends GameOver message

5


