
CS 5010: Programming Design Paradigms
Fall 2017

HW 1 – Environment Setup and Review of Java

Assigned: Saturday, September 9, 2017, Due: Monday, September 18, 2017 by 6pm

College of Computer and Information Science
Northeastern University – Seattle

The purpose of this assignment is to help you set up your development environment, get reacquainted with
Java, and start getting familiar with the tools that you will use for the rest of this course. Although this
assignment’s description is long, we expect that the step-by-step instructions will make doing the assignment
less overwhelming than reading it may be.

Note: You will need to know this assignment’s material for the remainder of the semester, so make sure that
you understand thoroughly the tools and concepts in it. If you experience troubles with finishing on time,
get in touch with the staff immediately so that we can help you get back on track.

Setup Problem 1 – Setting Up a Development Environment

Your very first assignment is to decide what computer(s) and development environment(s) you will use for
this course (or at least for this assignment). We strongly recommend using the IntelliJ IDEA IDE in this
course, but you are welcome to use any development environment that you are comfortable with. Note,
however, that we going to support only IntelliJ IDEA.

Setup Problem 2 – Setting Up CCIS Git Access

Throughout the course, you will receive starter code, and you will submit your assignments through the
CCIS’s GitHub server (git). git is a version control system that lets software engineers backup, manage, and
collaborate on large software projects.

For this problem, you should follow the setup instructions already posted on the course website, and
linked here again for your convenience:

– Lesson 0.5: Introduction to Git

– Do the exercises in the Git Laboratory

– Lesson 0.6: Dealing with Conflicts in Git

– CCIS Account: Sign up for a CCIS account. You will not be able to submit assignments until you have
a CCIS account, and you will need that account for GitHub access as well.

– Git and GitHub. Make sure git is installed on your computer.

You should familiarize yourself with these commands as you will need to use them throughout this homework,
and the rest of the course.

Setup Problem 3 – Setting Up Maven

Throughout this course, you will also use Apache Maven built management tool.

In this problem, your task is to familiarize yourselves with Apache Maven, and set it up. Instructions on
how to appropriately setup Maven have already been posted on the course website, under the link Maven
Setup.

https://www.jetbrains.com/idea/
https://github.ccs.neu.edu/
https://course.ccs.neu.edu/cs5010/PDF/Lesson0.5.pdf
https://course.ccs.neu.edu/cs5010/ProblemSets/git-lab.html
https://course.ccs.neu.edu/cs5010/PDF/Lesson0.6.pdf
https://my.ccs.neu.edu/account/apply
https://maven.apache.org
https://cs5010pdp2017fall.github.io/ProblemSets/Maven.pdf
https://cs5010pdp2017fall.github.io/ProblemSets/Maven.pdf

HW 1 CS 5010 – Fall 2017

Problem 4 – Your First Java Class

For some reason, which she can’t quite remember now, our imaginary student, Lydia, has decided to take
four different courses this term, and now she has four different homework assignments to work on every
week. But there is only so much time in a day, and she decides to write a code (program) that will randomly
choose which homework should Lydia tackle first.

Please help Lydia write her program. In doing so, please create a Java class with a main method that will
randomly choose, and then print to the console, one of the four possible course names that you yourselves
define. Create the file RandomHomework.java, which will define a Java class RandomHomework. Your class
RandomHomework will reside in the Java package Assignment1.

Hint 1: Java requires every runnable class to contain a main method, whose signature is public static void

main(String[] args). A sample code skeleton for the RandomHomework class is shown below. It is meant
only as a starting point, and you are free to organize your code as you see fit.

1 /∗∗
∗ RandomHomework s e l e c t s a random course name to d i sp l ay to the user .
∗/

pub l i c c l a s s RandomHomework {

6 /∗∗
∗ Uses a RandomHomework ob j e c t to p r i n t
∗ a random course name to the conso l e .
∗/

pub l i c s t a t i c void main (S t r ing [] argv) {
11 RandomHomework randomHomework = new RandomHomewok() ;

System . out . p r i n t l n (randomHomework . getCourse ()) ;
}

/∗∗
16 ∗ @return a random course name from a l i s t o f f our p o s s i b l e cour s e s .

∗/
pub l i c S t r ing getCourse () {

// YOUR CODE GOES HERE
}

21 }

Hint 2 – Using java.util.Random: Please do not write your own random number generator to decide
which course to select. Instead, take advantage of Java’s Random class. More specifically, you probably want
to use the nextInt(int n) method to choose your course. You can (should) read the documentation for
Random’s nextInt(int n) method by going to the Java API, and selecting Random from the list of classes.
One way to choose a random course is using an array. This approach might look something like:

St r ing [] course = new St r ing [4] ;
course [0] = ”Programming Design Paradigms” ;
course [1] = ”Object Oriented Design” ;

4 course [2] = ”Data St ruc tu r e s and Algorithms” ;
course [3] = ”Data Mining” ;

Hint 3: Now would be a good idea to add your new class to version control, and commit your code.

2

CS 5010 – Fall 2017 HW 1

What to turn in: As a solution to Problem 4, you will want to submit:

– Source code for the class Assignment1/RandomCourse.java that prints out one of four random course
names when its main method is executed.

– A short description (one paragraph or less) of what you did in Problem 4. You can store your written
description into a file writeup.txt.

Problem 5 – Testing Java Code with JUnit

Testing is an essential part of writing quality software, so it is important for testing to be a convenient
part of software development. JUnit is a framework for creating unit tests in Java. A unit test is a test for
checking that a given method in a class conforms to its specification for an input. This problem provides
a quick overview, and simple example of how JUnit works. (Unit testing will be more significant in later
assignments.)

Open both Assignment1/Fibonacci.java and Assignment1/test/FibonacciTest.java (from the com-
ments, you can see that FibonacciTest is a test of the Fibonacci class).

Now run the JUnit test Assignment1.test.FibonacciTest. A window or panel with a menacing red bar
will appear, indicating that some of the tests in FibonacciTest did not complete successfully. You should
see the list of tests that failed, as well as a more detailed Failure Trace for the highlighted test. The first line
in the Failure Trace should display an error message that explains why the test failed. (The author of the
test code creates this error message.)

If you click on the failure testThrowsIllegalArgumentException, you should see the appropriate error
message. In this example, the first line of the failure trace shows that Fibonacci.java improperly threw
an IllegalArgumentException when tested with zero as its argument. If you double-click on the name of
a test in the top pane, it will jump to the line where the failure occurred in the editor pane. Figure out
the problem in Fibonacci.java, fix it, and rerun the JUnit test. After you have fixed all the problems in
Fibonacci.java, you should see a bright green bar instead of a red one when you run FibonacciTest.

What to turn in: A successful solution to Problem 5 will consist of:

– A source code of a modified class Assignment1/Fibonacci.java, that passes the three JUnit tests.
(Note that you should not edit Assignment1/test/FibonacciTest.java to accomplish this task.)

– A short description (one paragraph or less) of what you did in Problem 5, to modify the class Fi-
bonacci.java. You can continue storing your written description into a file writeup.txt.

Problem 6 – Writing Your Own JUnit

In this problem, our imaginary student, Lydia, is busy again. One of her course assignments asked her to
write a program that receives an integer input from a user, then reverses it, and prints the reversed number
to the console. For example, if the input into a program is a number 25, then the output to the console
should be 52.

Lydia think that she knows what to do, and she starts by creating a Java class ReverseNumber. In doing
so, she uses the java.util.Scanner class. Her code is pretty straightforward, but unfortunately, when she
tries to use it, it doesn’t seem to work correctly.

Please help Lydia, and write your own version of the Java class ReverseNumber (still, using java.util.Scanner
class). After that, please write a corresponding JUnit ReverseNumberTest.java to test ReverseNumber

class.

Hint 1: Your ReverseNumberTest.java should test at least that:

– Class ReverseNumber throws an appropriate exception if no input number is given.
– Class ReverseNumber throws an appropriate exception if input number is in the wrong format.

What to turn in: A successful solution to Problem 6 will consist of:

– A source code for Assignment1/ReverseNumber.java.

3

HW 1 CS 5010 – Fall 2017

– A source code for JUnit test Assignment/ReverseNumberTest.java.
– A short description (a paragraph or two, but not more that that) of how did you go about implementing

ReverseNumber.java, and what did you test for in ReverseNumberTest.java. You can continue storing
your written description into a file writeup.txt.

Problem 7 – Getting a Real Taste of Java – Vehicles on a Road

Until now, we have only been introducing tools. This problem dives a bit deeper into a real programming
exercise. This problem may be a bit more challenging for some of you. If that is the case, please don’t be
discouraged. We are here to help, and we expect that time spent now will pay off significantly during the
rest of the course.

Warm-Up: Creating a Vehicle: Take a look at a class Vehicle.java. A Vehicle is a simple object that
has a velocity, expressed as a double, and a direction, expressed as an integer, where 1 denotes the Eastbound
direction, and 2 the Westbound direction.

Is the class Vehicle.java functional? If not, fix all of the problems with it, and document your work.

Hint 1: In doing so, you may want to develop a JUnit class VehicleTest.java to help you with testing.
Your unit test should test at least that:

– Class Vehicle throws an appropriate exception if no inputs are provided for the constructor.
– Class Vehicle throws an appropriate exception if inputs provided to the constructor have an incorrect

format, or value.

Using Pre-Defined Data Structures: Next, create a class Highway. As before, a skeleton code is provided
(see Highway.java). A Highway is a container for Vehicles. Highway should support all of the methods
listed below, and it is your task to fill in the code to implement these methods correctly:

– add(Vehicle)

– remove(Vehicle)

– getVelocityEastbound()

– getVelocityWestbound()

– numberVehiclesEastbound()

– numberVehiclesWestbound()

– contains(Vehicles)

The specifications for these methods are found in the javadoc file for Highway. In Highway, we use a
java.util.Set to keep track of the Vehicles. This is a great example of using a predefined Java data-
structure to save yourself significant work. Before implementing each method, read the documentation for
Set. Some of your methods will be as simple as calling the appropriate predefined methods for Set.
Hint 2: Before you start coding, please take time to think about the following questions. There seem to be
at least two approaches to implementing functions getVelocityEastbound()/getVelocityWestbound():

– Every time function getVelocityEastbound(), or getVelocityWestbound() is called, go through all
the vehicles on the Highway, determine which direction they are moving in, and then for the asked
direction, find the velocity of the slowest Vehicle.

– Keep track of the slowest velocity in the eastbound direction, as well as in the westbound direction, and
update those variables accordingly every time a new Vehicle is added or deleted. This eliminates the
need to perform any computation when getVelocityEastbond()/getVelocityWestbound() is called.

Which approach do you think is better, and why?
Hint 3: Can a similar reasoning be applied to functions numberVehiclesEastbound() and numberVehiclesWestbounds()?
Why, or why not?

4

CS 5010 – Fall 2017 HW 1

Implementing a Scenic Road: In this problem, you will implement a class ScenicRoad.java, where
ScenicRoad is also a container for Vehicles. The key difference between a ScenicRoad and a Highway is
that a ScenicRoad typically has a significantly lower bandwidth than a highway, and as such, can take on a
significantly smaller number of vehicles at once. Once there are too many vehicles on a ScenicRoad, we have
a traffic jam, and the velocity of all of the vehicles on the road typically decreases to less than 5mph. The
maximum number of Vehicles in a single direction (bandwidth) that a ScenicRoad can take on without
getting jammed is defined when the constructor is called:

pub l i c ScenicRoad (i n t bandwidht) }} ;

Since a ScenicRoad is in many ways similar to a Highway, we internally keep track of many things in the
ScenicRoad with a Highway, allowing us to reuse code. Many of the methods in ScenicRoad can simply
delegate to the equivalent in Highway. This design of having one class contain an object of another class,
and reusing many of the methods is called composition.

In addition to the constructor described above, you will need to implement the following new method in
the ScenicRoad:

– add(Vehicle)

In doing so, keep in mind that too many Vehicles can create a traffic jam on a ScenicRoad, which, in turns,
causes all Vehicles to slow down to 5mph, or less.

A few things to consider before you start writing code:

– If you will need to use sorting, you shouldn’t implement your own sorting algorithm. Instead, take
advantage of the Java API (remember: ”Know and Use the Libraries”).

– Also, you shouldn’t change your implementation of Highway or Vehicle for this problem. In particu-
lar, you should not implement the Comparable interface. If you are tempted to do so, consider using
Comparator instead. Comparator is a companion interface to Comparable, and is used throughout the
Java libraries: check out the sort methods in java.util.Collections as an example.

– If you do make any changes to Highway or Vehicle for this problem, then explicitly document what
changes you made and why.

– Be cautious if you plan on using Java’s TreeSet; remember that TreeSet does not store duplicates, and
if you provide a TreeSet with a Comparator, it will use that Comparator to determine duplication. See
the TreeSet API documentation for more details.

– Writing a JUnit test should help you here.

– And, naturally, don’t forget to commit your code more than occasionally.

What to turn in: A successful solution to Problem 7 will consist of:

– A source code for classes:

• Assignment1/Vehicle.java,

• Assignment1/Highway.java, and

• Assignment1/ScenicRoad.java

that pass their respective JUnit tests.

– A source code for JUnit test Assignment1/VehicleTest.java, Assignemnt1.HighwayTest.java, and
Assignment1.ScenicRoadTest.java.

– A short description (a paragraph or two, but not more that that) of how did you implement Vehicle.java,
Highway.java, and ScenicRoad.java, and what did you test them.. You can continue storing your writ-
ten description into a file writeup.txt.

5

HW 1 CS 5010 – Fall 2017

Final Check Point - What Should You Have Turned In

Each assignment will indicate exactly what to turn in paragraphs titled What to Turn In. This will
typically include Java source files (that you change or create), and occasionally some text files. You will turn
in your assignments by committing changes, and pushing those changes to your GitHub repository. To do
so:

– Add and commit all changed (or newly-added) files.
– Push the committed changes to the repository so they are stored in GitHub, as well as updated locally.

You can commit and push changes as many times as you want while working on the assignment. That is a
good way to store backup copies of your work in the CCIS GitHub repository.

When you have committed and pushed all of your changes, and you are done with the assignment, you
should create a git tag in your repository named Assignment1-final, and push that tag to your repository
too. Once you have committed and pushed that tag, your assignment has been submitted. The staff will
grade the files in your repository that are labeled with that tag, so be sure you remember to
add/commit/push your files and the tag!
Your TAs should be able to find the following in the src directory of CCIS GitHub:

– Assignment1/RandomCourse.java that prints out one of four random course names when its main
method is executed.

– Assignment1/Fibonacci.java that passes the three tests in Assignment1/test/FibonacciTest.java

(Note that you should not edit Assignment1/test/FibonacciTest.java to accomplish this task.)
– Assignment1/ReverseNumber.java and Assignment/ReverseNumberTest.java

– Assignment1/Vehicle.java, Assignment1/Highway.java and Assignment1/ScenicRoad.java that
pass their respective JUnit tests, which you should with you include with your code as well.

– Short textual file, writeup.txt that describes you design and testing process for each of the problems.

6

