
Guidelines for Refactoring Assignments 2 & 3

YOUR GOAL: Refactor your code for Assignments 2&3 to become a CLEAN CODE.

What is a clean code?

Clean code is simple and direct. Clean code reads like well-written prose. Clean code never obscures the

designer’s intent but rather is full of crisp abstractions and straightforward lines of control. [Grady

Booch, author of Object Oriented Analysis and Design with Applications]

I like my code to be elegant and efficient. The logic should be straightforward to make it hard for bugs to

hide, the dependencies minimal to ease maintenance, error handling complete according to an

articulated strategy, and performance close to optimal… Clean code does one thing well. [Bjarne

Stroustrup, inventor of C++]

Clean code can be read, and enhanced by a developer other than its original author. It has unit and

acceptance tests. It has meaningful names. It has minimal dependencies, which are explicitly defined,

and provides a clear and minimal API… [Dave Thomas, founder of OTI, godfather of the Eclipse

strategy]

All the above citations are taken from Chapter 1 “Clean Code” of a VERY recommended book (generally

written to serve MANY languages, but with convenient examples in Java):

[CC] Clean Code, Robert C. Martin

Another book that you should use this week is

[EJ] Effective Java, Joshua Bloch, Second Edition

Below are suggestions for refactoring, however they are NOT limiting and may NOT cover

everything discussed in lectures/codewalks. Incorporate all the insights you have gained till now

from the course!

Maven

Maven Reports are a GREAT way to start improving/refactoring your code.

If Maven fails to build (unsuccessfully exits) the correctness will not be graded (that is 0 for correctness).

Start from bringing Maven Reports to the following standards:

• JaCoCo:

i. Code coverage should be above 90%

ii. Methods declared in Interfaces and their implementations should be green

iii. Overridden equals and hashCode should have most of it green

If you cannot improve code coverage by additional tests that means you have too much logic in static

methods, dead code etc.  refactor your code to improve coverage

Recommended reading on proper test design: Chapter 9 in [CC]

• Checkstyle - should have NO violations (0 errors and 0 warnings).

• FindBugs - should have NO violations (0 errors and 0 warnings).

 . Ignore security and performance violations (especially if they suggest you changing code to

something you do NOT understand, like lambda functions)

• PMD - should have NO violations (0 errors and 0 warnings).

Points will be reduced if your Maven reports do not compile with the above restrictions after code

refactoring!

General Design

Requirements for general refactoring:

1. Your code should follow proper naming conventions: Chapter 2, “Meaningful names” in [CC]

2. Your code should have proper programming style:

a. NO magic numbers/strings (any hardcoded information inside code) – Item 30 in [EJ],

Chapter 6, Chapter 17, J3 in [CC]

b. NO dead code, including Chapter 17, G9 in [CC]

i. unnecessary if statements

ii. unnecessary nulls and casting

iii. code/method that will never run

c. NO copy-pasted or duplicate code  you should abstract simple copy pasted code, this

might sometimes require minor modifications (needs an argument when abstracted)

d. NO boolean flags in methods  boolean flags means that your method is doing more

than one thing  violation one method – one task.

e. Maintain same level of abstraction per specific instructional line/method (Do NOT mix

important concepts with tedious implementation details) – Chapters 6 & 17 in [CC]

3. Your code should properly capture information (Chapter 6 in [CC] – “Object and Data

Structures”)

a. Do NOT rely heavily on basic types (everything is an array, a string, an int etc), when a

new type might improve encapsulation/reusability/robustness to errors.

For example: If the problem had to capture the State, i.e., WA, NY etc. I expect the

solution to have a class State that captures a US state acronym and that the constructor

checks that the String passed as argument has 2 characters.

OR: In assignment 2 – most of the students (even strong students) set patient urgency as

int. Instead they should have had a proper class (that can encapsulate any changes in

urgency representation or calculation, or allows some meaningful constants like

MAX_URGENCY, which should be hold within Urgency class)

b. Choose data structures that serve design well (do NOT put everything is an array, a

string, an int etc.). Try to maintain reasonable complexity (reasonable trade-off between

clean design and a bit higher complexity is fine)

4. You should design classes carefully (Chapter 10 in [CC] – “Classes”, Chapter 4 in [EJ] –

“Classes and Interfaces”)

a. Avoid "God" class anti-pattern - one complex class to rule them all or one static method

to rule them all

b. Do NOT miss opportunities for helper methods  is also helpful to maintain the same

level of abstraction (see 2 e. above)

c. Set appropriate visibility of methods/fields  every major type should have well defined

interface (avoid too much information Chapter 17, G8 in [CC])

d. Maintain proper cohesion within the class (a simple way to check is to see how many

fields you defined are used in every NON-static method, ideally every non-static method

uses all the non-static fields)

5. Use JDK APIs consistently– Item 47 in [EJ]

a. Use appropriate types from the JDK (e.g., List) along with their methods

i. do NOT re-implement methods

ii. do NOT re-implement JDK types if you are NOT asked to.

6. Misc

a. Do NOT rely on concrete types instead of abstract (interfaces or abstract class) - compile

time type should be an abstract type (unless they are using methods only available in

concrete classes), e.g., List<Integer> l = new ArrayList<> and NOT

ArrayList<Integer> l = new ArrayList<>() (Item 52 in [EJ])

b. Maintain proper Javadocs, including invariants, pre- and post-conditions (please note that

@postcondition/@precondition /@requires are NOT recognized by Maven and standard

JavaDoc, instead use @param/@throws/@return)

c. Do NOT create silent code (like aborting your method with return, instead of throwing

an exception or catching exceptions and doing nothing with them, while the code silently

continues).

d. Do NOT overuse static methods/fields (they are better than magic numbers, but not in

hundreds and not when they do not have direct relation to the class they are in).

e. Rethink your design to minimize coupling of between your classes (see Lecture 5)

f. Verify completeness and consistency of code of your design (see Lecture 5)

g. Verify modularity of your design (dividing a system into components or modules, each

of which can be designed, implemented, tested, reasoned about, and reused separately

from the rest of the system). Verify that every major component of your problem is

captured by a certain module/class (that is in Assignment 3 you might want to have

CommandLineHandler, InputOutputHandler, Template, Database,

Binder/PlaceholderEvaluator) and that you define/operate through proper interfaces.

WHAT TO SUBMIT?

1. Push your new code by next Monday, October 16th 6:00 p.m.

2. Attach a writeup – summary of ALL the changes you have incorporated and WHY you did

so (provide a reason for every change).

3. This assignment is an opportunity to improve grade for previous two!

GOOD LUCK!!!

