
9/17/2017 12-1

Exceptions

Maria Zontak

Verifying Validity of Input Parameters

•A non-private method should always perform parameter validation
as its caller is out of scope of its implementation

http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

/** @param rate refresh rate, in frames per second.

* @throws IllegalArgumentException if rate <= 0 or

* rate > MAX_REFRESH_RATE. */

public void setRefreshRate(int rate) {

// Enforce specified precondition in public method

if (rate <= 0 || rate > MAX_REFRESH_RATE) throw new

IllegalArgumentException("Illegal rate: " + rate);

setRefreshInterval(1000/rate);

}

Preconditions on public methods are enforced by explicit checks that
throw particular, specified exceptions

9/17/2017 12-2

http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

9/17/2017 12-3

Exception Handling

Exceptions: represent unusual events (as well as errors)

•Finite table is full; cannot add new element

•Attempt to open a file failed

Problems:

• the method that detects the error does not know how to
handle it (and probably should not)

• the client code could handle the error, but is not in a
position to detect it

•Solution: method detecting an error throws an exception;
client code catches and handles it

9/17/2017 12-4

Exceptions as Part of Method Specifications

What should a client code method do with exception?

•Either must handle it
void readSomeStuff() {

try {

readIt(); // potentially throws an Exception

}

catch (Exception e) {

handle

}

•Or declare that it can potentially throw it
void readSomeStuff() throws Exception {

readIt();

}

9/17/2017 12-5

try-catch
try {

somethingThatMightBlowUp();

} catch (Exception e) {

recovery code – e, the exception object, is a “parameter”

}

➢Execute try block

➢If an exception is thrown, catch block can either process the
exception, re-throw it, or throw another exception

➢Thrown exceptions terminate throwing method and all methods
that called it, until reaching a method that catches the exception
(has a catch block whose type matches the exception)

➢If there is no try/catch  terminate the thread (possibly the
program)

9/17/2017 12-6

try-catch
•Can have several catch blocks

try {attemptToReadFile();}

catch (FileNotFoundException e) {…}

catch (IOException e) {…}

catch (Exception e) { …}

•Semantics: try to match exception parameters in order until one
matches

•Need to go from more specific to more general (why?)

•If no match – exception propagates (gets thrown) to calling
method

•In Java SE 7 and later, a single catch block can handle more than
one type of exception :

catch (FileNotFoundException | IOException | Exception e) {…}

• http://www.oracle.com/technetwork/articles/java/java7exceptions-486908.html

http://www.oracle.com/technetwork/articles/java/java7exceptions-486908.html

9/17/2017 12-7

Throwable/Exception Hierarchy

Checked

Unchecked

Checked: are exceptions that are checked at the compile time

•Represent invalid conditions in areas outside the immediate
control of the program (invalid user input, database problems,
network outages, absent files)

•Are subclasses of Exception

• Method must establish a policy for all checked exceptions thrown
by its implementation

➢either handle them somehow

 catch all checked exceptions it might encounter (try-catch)

➢or pass the checked exceptions further up the stack

 declare that it might throw them (using throws keyword)

9/17/2017 12-8

Checked vs Unchecked Exceptions

9/17/2017 12-9

Checked vs Unchecked Exceptions
Unchecked: are not checked at the compile time.
•Represent defects in the program (bugs)
•Reflect errors in program's logic from which it is not possible to

recover at a run time
•Often invalid arguments passed to a non-private method.

•Are subclasses of RuntimeException, and are usually implemented
using IllegalArgumentException, NullPointerException, or
IllegalStateException

•Method is NOT obliged to establish a policy for the unchecked
exceptions thrown by its implementation
(almost always does not do so)

http://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/IllegalArgumentException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/NullPointerException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/IllegalStateException.html

• No need to declare anything about unchecked exceptions

• Include an @throws in the JavaDocs for ones specifically thrown
• RuntimeException (unchecked) is itself a subclass of Exception
(checked).
•Why to have both types?
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
• http://www.javamadesoeasy.com/2015/05/exceptions-top-60-interview-questions_16.html

9/17/2017 12-10

Checked vs Unchecked Exceptions

http://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://www.javamadesoeasy.com/2015/05/exceptions-top-60-interview-questions_16.html

Writing your own exception

/**

• Represents an exception thrown when an invalid value is

given for radius

*/

public class InvalidRadiusException extends RuntimeException {

/**

* {@inheritDoc}

*/

public InvalidRadiusException(String message) {

super(message);

}

}

Is this checked or unchecked exception?

9/17/2017 12-11

What can we do with
InvalidRadiusException?

public class Circle extends AbstractShape {

/**

* Given a pin and a radius greater than 0, creates a circle

* @param pin the location of this circle's pin

* @param radius this circle's radius. The radius must be greater than 0

* @throws InvalidRadiusException if the radius is negative or zero

public Circle(Posn pin, Integer radius) {

super(pin);

if (radius <= 0) {

throw new InvalidRadiusException("Radius must be

> 0, given: " + radius);

}

this.radius = radius;

} // elided code

}

9/17/2017 12-12

Do we need to handle it?

•Since InvalidRadiusException is unchecked (why?),
we may or may not handle it

•Example of how to handle:

Somewhere inside VERY important client code:
try {

Circle myCircle = new Circle(new Pin(0,0), -2);

}

catch (InvalidRadiusException invalidRadius) {

ShowErrorMEssage errorMessage = new ShowErrorMessage

("We detected an incorrect value " +

"for myCircle. “ + "Please provide a

positive number.");

new Window(errorMessage).exit();

}

9/17/2017 12-13

Always be VERY descriptive in your error message

