
9/17/2017 06-1

Packages, Visibility
(review?)

Maria Zontak

9/17/2017 06-2

Packages

What?

A package – a group of related classes, interfaces and sub-packages

Responsibilities?

•Provides organization based on related functionality

•Provides access protection - hides classes required for package
implementation, but that should not be used by client code

•Removes naming collisions - a package defines a namespace

Can reuse common type names in different packages (List, …)

9/17/2017 06-3

Package and Type Names
•Every class and interface has a fully qualified name:

package name + type name

java.awt.Color

java.lang.String

java.awt.Rectangle

•Can always refer to a type using its fully qualified name
java.lang.String a = new java.lang.String();

•Each type also has a simple name

Color, ArrayList, Rectangle

•Can use import declarations to refer to type by simple name

•Why don’t we import java.lang.String, but still use String
by a simple name?

9/17/2017 06-4

Import Declarations (1)
To import

•a single type - provide its fully qualified name

import java.awt.Color;

•all types in a package – use the package name and ‘*’

import java.util.*;

•Have to import each package explicitly
import java.*;// does NOT import java.util.*,

must do

import java.util.*;

9/17/2017 06-5

Some Standard Packages

The standard Java libraries contain over 3000
classes and interfaces in over 150 packages.
Common examples:

•java.lang – core classes;

imported automatically
includes Math, Integer, Double, Char..

•java.util – collections, date/time,

random number generator, …

•java.io – input/output streams, files

•java.net – network I/O, sockets, URLs

•java.awt – original graphical user interface (GUI)

•javax.swing – extension of awt, more sophisticated GUI

9/17/2017 06-6

Visibility of Fields and Methods

•Four possibilities
•private – visible only in the class containing the declaration

•default (no keyword) – visible in the declaring class and in all
other classes in the same package
(this is the default if nothing specified; no keyword !)

•protected – like package, but also visible in any class that
extends this class, even if in another package

•public – visible anywhere the class is visible

•Corollary: if you forget to specify private, it is visible
outside the class within the package. Careful!

9/17/2017 06-7

Guidelines
•Instance variables should almost always be private

•Provide appropriate methods to give client code controlled access
(if needed)

•Perhaps protected if the class is intended to be extended and we
do not want to make getters methods public: Consider carefully

•Methods should be public if part of the published interface of a
class; private otherwise

•Protected and package visibility only after careful consideration; not
by default!

9/17/2017 06-8

Visibility of Classes

•Public

visible anywhere the package is visible

•Package – protected

visible only to the code in the same package.

public class Example { … } // public class name

class anotherExample{ … }// class with

package scope

•A Java source file contains only ONE public class or interface, and
filename must match the public name

